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I ABSTRACT

This paper provides a comprehensive account of analytical

results for computing electromagnetic fields that are induced
ocean sea a�ter as a result of its motion relative to the

geomagnetic field. The emphasis is on the characterization of

magnetic field and magnetic field gradient spectra induced by
Internal waves and surface waves In a deep ocean environment.

The theoretical results are formulated so as to be directlySapplicable to the computation of sea water generated magnetic

noise and to the assessment of its deleterious effects on the

sensitivity of magnetic sensors employed for magnetic anomaly

detection over an open ocean. Magnetic field component and

gradient spectra are computed both for stationary and moving

sensor observation platforms.
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SUMMARY AND CONCLUSITONS

This paper comprises results of an analysis of electromag-

netic fields induced by the interaction of ocean currents with

the geomagnetic field. The work is part of an ongoing effort

at IDA in support of the DARPA program on nonacoustic ASW tech-

nidues. The objective of the effort reported on herein was to
• •_•Idevelop a general analyttical formulation for the computation

of electromagnetic field spectra induced by the motion of sea

water in the upper layers of a deep ocean uith particular em-

phasis on surface waves and internal waves.

The intended application of the analytical and numerical

results is to the characterization of ocean current generated

magnetic noise that could degrade the performance of sensitive

instruments (e.g., superconducting gradiometers) employed in

magnetic anomaly detection over a deep ocean. Although exist-

ing instruments that respond directly to ocean wave generated

I L electromagnetic noise are predominantly of the magnetic type

(measuring induced ma&netic fields or their gradients), in this

study electric fields are also under consideration. The purpose

of including electric fields within the same analytical frame-

wcrk is twofold. First, the inclusion of the electric field

* elucidates the physical mechanism -respQnsible for the inter-

action between the geomagnetic field and hydrodynamic phenomena

in the ocean. Second, under certain conditions, the electric

field comprises im-formation on the hydrodynamic flow field not
readily inferred from magnetic-type measurements alone.

A brief outline of the material covered in this paper is

3-: as follows:
t
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1. The derivation of expressions for electromagnetic fields

Induced by general fluid velocity fields, followed by.

an Investigation of the validity of various approxima-

tions to the field equations. The discussion includes

a comparative evaluation of approx~mations employed in

past studies of vagnetohydrodynamic phenomena (Chapters

I-III, together with Appendices B, C, and D).

2. Explicit expressions for components of induced magnetic

fields under the quasi-static approximation but arbi-

trary fluid velocity fields (Chapter IV).

3. Analytical results for electromagnetic fields induced

by linear surface waves, and linear internal waves -in

a deep ocean (Chapter V).
l. Explicit expressions and numerical results for ti-e

spatial and temporal spectra of surface-wave- and

internal-wave-induced electromagnetic field con.onents

and their 2'adients observed from stationary (Chapter

V) and moving (Chapter VI) measurement platforms'.

The analytical formulation for surface-wave-lnduced and

internal-wave-induced electromagnetic field spectra requires

several fundamental assumptions on hydrodynamic phenomena in

the ocean. The required background material is presented in

Appendix A for surface waves and in Appendix E for Internal

- waves.

The major conclusions are:

* The quasi-static approximation to the electromagnetic

fields 0 is valid if the horizontal scale length of the

bhdrodynamic flow fields does not exceed 1 km, and if

the characteristic frequency is on the order of 1 Hz or

less. This encompasses the usual range of hydrodynamic

7 phenomena of interest in magnetic anomaly detection.

- - Under the quasi-static approximation the electromagnetic

fields are given by relations 'erived from electrosta-

tics and magnetostatics, whereir time enters only as a

Sx i1



parameter. This approximation affords a .substantial

simplification and permits a unified treatment of elec-

tromagnetic fields induced by ocean currents.

. Under quasi-static approximation internal waves induce

magnetic fields above che ocean surface, but no eZec-

tric fields. On the other hand, surface waves induce.

both magnetic and electric fields. Moreover, the func-

tional forms of the temporal spectrum of any component

of the surface-wave-induced electric field and a surface-

wave-induced magnetic field gradient are identical.

This feature could be exploited in subtracting the

surface-wave-induced contribution from the internal

wave contribution in a moving gradiometer sensor. Thus,
since for sufficiently fast platform velocities the sur-

face wave and internal wave contributions to a measured

magnetic field gradient overlap (see, e.g., Fig. 16a,
p. 143), their separation on the basis oZ a total (spec-
tral) power measurement would not be possible. An elec-
tric field sensor would provide an independent measure-
ment of the surface wave contribution, which could be
subtracted from the total gradiometer output (e.g., by
employing a correlation technique).

* Numerical results based on the theory developed for the
* spectra of magnetic field gradients induced by surface

-* waves and internal waves indicate levels substantially
above the intrinsic instrument noise limit of currently
available superconductive gradiometers. For example,
"for an aircraft-mounted gradiometer typical computed

spectra are shown in Fig. 16a, p. 143. Over the fre-

quency range shown, the intrinsic noise level of the
instrument would be essentially flat at 10- (pT/m) 2/Hz
-for a state-of-the-art device and at about 10-2 (PT/m)2/Hz
for an "average" gradiometer sensor.

xiII xi
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Based on the theorj developed herein, the temporal

spectra of the internal-wave-induced magnetic field
gradients observed from a uniformly translatIng meas-

urement platform above the ocean surface are relatively
insensitive to the detailed structure of the thermo-
cline, provided observations are restricted to the fre-

quency range above the maximum -Isl.c frequency. This
result holds true only if the platform velocity exceeds

the maximum internal wave group velocity (typically a
fraction of a meter per second).

* Horizontal and vertical components cf the Lnternal-wave-
induced magnetic field components and gradients observed

from a geostationary measurement platform are completely
decorrelated whenever the internal wave wavenumber spec-

trum is isotropic. Conversely, the degree of correla-

tion between such components is a measure of the direc-

tionality of the internal wave wavenumber spectrum.

Thus, correlation techniques applied to ortnogonal com-
ponents of the induced magnetic field gradient afford

the possibility of more accurate determination of inter-
nal wave spectrum directionality than currently possible

from direct hydrodynamic measurements.
* A single-axis magnetic field gradient sensor has also

mndest Intrinsic directional discrimination properties.
Depending on the relative orientation of the sensor
axis and the geomagnetic field, the "gain" in detecting

a perfectly directional internFj wave field relative o

an isotropic background internal wave of equal power

can reach about 6.8 dB.
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S. ;

1. INTRODUCTION

This paper provides a comprehensive account of analytical

results for computing electromagnetic fields that are induced

by ocean sea water as a result of its motion relative to the

geomagnetic field. There has been a sustained interest in this
area over a number of years mainly due to the potential applica-

Stlcn of this class of phenomena as a diagnostic tool in ocean-

ography. More recently interest has been generated by problems
A in magnetic anomalh detection over an open ocean. In this class

of problems, ocean current generated magnetic fields and their

gradients constitute a source of noise.

The majority of past analytical studies deal with a re-
strictive class of hydrodynam.ic flows. Thus, Longuet-Higgins et
al. [1] treat electric fields induced by steady motion of sea

- water. The papers of Worburton and Cominiti [2] ano Weaver [3)
consider surface-wave-induced electromagnetic fields. Internal-

wave- induced magnetic fields for a two-layer ocean model are
treated by Eeal and Weaver [4], employing the fo-msulation for
irrotatlonal velocity fields in [3). Sanford [5) treats elec-
"trcrzagnetic fields generated by deep-sea tides. Employing the

stochastic Pierson-Neumann spectrum model for wind-generated
surface waves, Bergin [6] has presented calculations of average

I rmagnetic fields induced in a deep ocean. The most compiehensive
treatment of ocean-wave-induced electromagnetic fields is due to

Podney [7]) It encompasses surface waves and Internal waves for
oceans with arbitrary horizontal strat.Ificaticn.

No formulation applicable to general oceanic flow fields

appears to have been published. Thus, although Podney's [7]
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results encompass rotational flow, they are confined to the

special case of purely horizontal vorticity. In addition, in

the existing literature, the treatments of the permissible

apprcximations to the electromagnetic field equations are gen-

eraliy specialized to the particular flow field under discus-
sion, so that it is not always clear whether and under what

conditions the approximations may be extended to encompass more

general situations. Moreover, statements with regard to the

range of validity of various approximations are by no means con-

sistent. For example, according to Sanford [5) the quasi-stitic

arprcximation is valid if up.0wHA < 1, where H is the ocean depth

ar. A the horizontal scale length of the hydrodynamic wave,
clearly implying that such an approximation breaks down for a
sufficiently deep ocean. On the other hand, according to Podney

[7], the restriction on the validity of the quasi-static approxi-
mation is of the form oup << 1, which, in consequence, appears

anlicable to an ocean of arbitrary depth. Other approximations
4 •±hose nature is not clarified are implicit in the existing for-

mulations. A case in point is the electric field above the

ocean surface induced by surface waves. Thus, one finds that

this electric field does not vanish even in -he limit of zero

electric conductivity of the fluid [see, e.g., Eq. (27d) of

Podney [7)1. Such a result is clearly inadmissible for it would

The primary motivation. for the work presented herein was tc
mean generation of an= electric field by an "ether wind."

construct theoretical models for temporal and spatial spectra of

interrnal-wave and surface- ave-induced magnetic fields and their

gradients, the results forming the basis for further study of

the effects of these noise sources on the sensitivity of instru-
4 ments employed for magnetic anomaly detection over a deep ocean.

iHowever, because of the apparent lack of generality in, and the

perceived inconsistencies of, the formulations in the published
S| ~literature, it i-s deemed advisable to refor.-nnalate the problem

by starting from first principles, ,o as to encompass arbitrary

2



flow fields and, at the same time, carefully examine the quan-

titative significance of the required approximations.

The formulation for electromagnetic fields induced by
arbitrary oceanic currents is developed in Chapters II, II, and

IV, in conjunction with Appendixes B, C, and D. It is shown by

simple arguments presented in Chapter III and by a rigorous

analysis in Appendix D that the restriction on the quasi-static

approximation is expressed by the inequality A << 103f«-12

wherein A is the horizontal scale of the hydrodynamic disturbance

in meters and f the frequency in Hz. This agrees with the con-

dition given by Podney [7] but is in disagreement with that of

Sanford [5]. Specifically, under the quasi-static approxima-

Stion, the time-varying electromagnetic fields induced by a
velocity fleld V(r,t) are identical to those obtained from the

solution of purely magnetostatic and electrostatic problems ex-

cept that the time variable appears explicitly as a parameter

in the forcing functions (velocity fields). In anticipation of
this result the discussion in. Chapter II deals exclusively with

electrostatics and magnetostatics. The electrostatic problem,

set up in its full generality, at once reveals the reason for

the apparent lack of dependence of the electric field above the
ocean surface on conductivity. It turns out that this independ-

ence is only approximate, since it is valid under the stipula-

tion that cE IG << 1 sec, where Er is the dielectric constant
o r

of the fluid. This approximation is fUly justified for sea

water .nd, therefore, makes it perfectly clear why the limiting

form fo zero conductivity of Podney's [7] Eq. 27d is not mean-
n g-ful1.

The connection with Podney's [71 formulation for the elec-

A tric field in terms of the vector stream function is made in the
discussion on pages 23-29, (specifically Eq. 59b), where is is

shown that a term must be added to Podney's [7] result when the

vertical vorticity of the fluid is not identically zero. The

presence of this additional term renders the formulation for the
4!

r -I I
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mageti field somewhat moecmesmeven under the quasi-

static approximation. Th explicit results for all the magnetic!

Sfield corponents, '%both below and above the ocean surface) areI J listed in Chapter- 17. The form0-ae are gi-;en in two equivalent

II

forms: as volumme int-egrals over the velocity fields, and in terms

of the Fourier, transforms of the velocitL-y fields. Depending on

192.- forms may be more convenient .

•-I•In ChaDLt-er V the results are snecialized to electromagnetLicSmagfields induced by internal woaves acbr. surface uves. Under the

quasi-static approxi.mation the formulas agree exactly with th-og e
fipresented by Podney [7]b Although the quas-state approxfma-re

tlin within the stiDufate o restriction gives an adequate account
fl of the dominant field components, certain characteristic physvcai
features of the structure of the induced electromagnetic fields
themerge only when a full wave solution is considered. one de-

tailed f nlysas is presented in Appendix D, and the results are

Sdiscussed in= Chapter V-D. One finds that, when !ýLae in l11hfto Insport of electromagnetic energy above th e,

finternal-wave-nduced fields differ from surface-wave-.ndueed
uafields in rather fundomentae respects. Thus, a unidirectional

preeinternad wave gives ryse to an eletu tror-aen:tc surface wave above

,. . the ocean surface. the direction of propagatn te aountoftelecity, and phase velocity of this erectroaaanetie surface

wave are idenoical to those of the internal e ave. This eiectrc-
m ene lyc surface wave is of the H-mode iype: tc e vertical reag-

n I--L- tic field and tise electrec fld parallel tao the ocean sul face

tand orthogonal to the dlrectiCn of propagatibov , form the elec-

interoanal~ pairwoeerdc gives rise to an e~etoancsrfal c wave above

the Poynting vector in the direction of propagation; the tgord

field component Is a magnetic field that points in the direction
of propagation (hence, the desHgnation H-mode). The directionag

A~o anrthgoal toteliectromagoftiropagatiflo for thusawyerpendlec-

to the wave crest of the internal wave. The situation iz funda-

iI *mentally different for surface-wave-induced electromagnetic
[] • [



fields. One finds that in this case one obtains two electromag-

netic surface waves: an H-mode wave, ani an E-mode wave, each

when taken in isolation, carries electromagnetic power perpendic-

ula- to the wave crest. The structure of the E-mode wave is

characterized by a vertical electric field, and a magnetic field

parallel to the ocean surface and perpendicular to the direction
of propagation. The third component Is that of the electric

field which points in the direction of propagation. Podney [7)

refers to the electric field associated with this wave as an
electrostatic field, a designation which is misleading since
this field obviously depends on time and participates in trans-
port of real-electromagnetic power. Since, in general, a
hydrodynamic su.face wave induces both an H-mode and an E-mode
wave, coupling between the two electromagnetic wave types gives
rise to net electromagnetic power flow which is nearly along the

-crest of the inducing surface wave.

The relationship among the field components for each of the
two electromagnetic surface waves turns out to be identical to
that for classic electromagnetic slow surface waves. In partic-
ular, they could be generated by a process of total internal re-

SLi flection of an electromagnetic plane wave impinging from within
A a dielectric half space on an air dielectric boundary. Of

course, the value of the equivalent dielectric constant required
4J •" for a simulation of the low phase velocities or these waAes

above the ocean surface would have to be extremely large (6107)"

Chapter VI takes up the statLstical formulation for the

electromagnetic Ilelds induced by internal waves and surface
, kwaves. Under the assumption of temporal stationarity and spa-

tial homogeneity in any horizontal plane, general formulas are
derived for the spectra of electric fields, magnetic fields and
their gradients as these would be observed from stationary plat-

S!forms above the ocean surface. Internal wave induced fields are

treated in Chapter VI-A, B. Under the quasi-static approxima-
tion, internal waves induce only magnetic fields above the ocean~II

*;• == =
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surface. A complete characterization of the magnetic field and

gradient spectra requires knowledge of the ocean stratification
- and the distribution of energy in mode wave number space. A

theoretical model for the spectra of deep-ocean internal waves

has been presented by Garrett and Munk [8). We have found, how-

ever, that their model is not directly usable in computing spec-
tra of induced magnetic fields. A different model, due to Milder

[9], which incorporates some features of the Garrett and Munk

model as a special case, was found more suitable for our purpose.

In order to clArlfy the nomenclature employed in connection with
the spectral calculations, a detailed account of the theory of

linear internal waves is presented in Appendix E, which includes
a comrison of the theories of Garrett and Munk and Milder.

The central assumption which we employ throughout in our calcu-
lat ion of spectra of internal waves is that the energy in mode
wave number space of ambient Internal waves is distributed in

proportion to the square of the phase velocities of the indi-

vidual internal wave modes. We term this the Milder hypoth-

esis. Its consequences are explored in detail in Appendix E,
in particular in regard to the simplification it introduces
in the expressions for 'towed" internal wave spectra. Milder's
hypothesis is incorporated into the formulation of internal-

wave-induced magnetic field and gradient spectra. One impor-
tant conseauence of the hypothesis is that the spatial spec-
-% tra of the induced fields can be computed directly from the

knowledge of the V•isR!N frequency profile without the need of
computing the eigenfunctlons and the associated dispersion rela-

tions. The results are applied to compute the average values of
fields and gradients for a deep ocean. Although an exponentially

decreasing VMIs~ll frequency profile has been used in these cal-

"culations, similar results can easily be obtained for arbitrary
"profiles, since the formulas are expressed explicitly in terms

of the V•is==l• frequency. On the other hand, the computation of
1 •temporal spectra requires a detailed knowledge of the internal



wave eigenfunction. Numerical results have been obtained for

the spectra of magnetic field components and gradients for the

exponentially decreasing VNis~ll frequency profile. All data

Have been presented in a normalized form so that numerical

values of the spectra can be obtained for arbitrary relative

orientation of the geostationary coordinate system and the di-

rection of the geomagnetic field. Although these numerical re-

sults have been obtained specifically for an isotropic internal

uave spectrum, the general formulas are valid for arbitrary in-

- ternal wave number directionality. The question of the feasi-
bility of discriminating between an isotropic and highly direc-

- tional internal wave spectra by means of multiple axes magnetic
sensors is explored. In principle, such discrimination appears

I possible either on the basis of a spectral correlation measure-

nent, or by taking advantage of the intrinsic directionality of

"the magnetic field component or gradient sensor. For example,
one finds that the intrinsic directional discrimination of a

single axis (horizontal-horizontal) gradient sensor is about

6.8 dB.

I .Surface-wave-induced electromagnetic field spectra are

discussed in Chapter VI-C,D,E. Numerical calculations are

based entirely on the Pierson-Neumann spectrum. Results for the
S j total r.m.s. magnetic field agree with those presented by Bergin

S[6]. Numerical results are also obtained for magnetic field

I igradients as well as for the components of the Induced electric
field.

S•"One interesting result provided by the analysis in Chapter

4 Vi-D,E is that the functional dependence on frequency of the

magnetic field gradient spectrum and the electric field compo-
nent spectrum is Identical. Since internal waves induce no

4 electric field above the_ ocean surface, the measurement of the
mutuil spectral coherence function of the electric field and of

the nagnetLic field gr-adient could provide a means of identifying

the surface wave spectral contribution in the output of a- -jJ



magnetic field gradient sensor. A typical level of the total

r.m.s. electric field at the ocean surface is on the order of

60 uvolts/meter.

Magnetic field spectra relative to a moving measurement

platform are discussed in Chapter VII. In Chapter VII-A numer-

ical results are presented for surface-wave-induced magnetic

field and gradient spectra as would be observed from a low-fly-

ing aircrbat above the ocean surface. The analytical results
for computing the temporal spectra of internal-wave-induced

magnetic fields and gradients are presented in Chapter VII-B.

Frr tow speeds much greater than the maximum internal wave group
velocities and teziporal frequencies above the maximum V~is~ld

frequency, the formulae for Internal-wave-induced magnetic field

and gradient spectra can be expressed in a particularly simple•

torm, viz., the spectra are given explicitly in terms of the

Vaisaila frequency profile. Thus, although numerical results

have been obtained only for the exponential profile, similar

calculations could easily have been carried out for any pre-

scribed profile.

*i
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I!. STATIC ELECTRIC AND MAGNETIC FIELDS INDUCED
BY STEADY FLOW OF CONDUCTING FLUID
THROUGH A CONSTANT MAGNETIC FIELD

A. FIELD EQUATIONS FOR A MOVING MEDIUM

In working toward the objective of establishing a general

set of explicit relationships between the hydrodynamic velocity

field in the ocean and the electromagnetic fields induced by

the motion of the conducting sea water relative to the geo-

magnetic field, we shall start with the purely static situation,

i.e., we shall temporarily assume that the water motion is

steady. The transition to time-varying fields engendered by

- the usually unsteady flow will be made only in Chapter III.

This approach is taken primarily for didactic reasons. The

approximations to the electromagnetic field ecuations when see-

cialized to the constitutive parameters of sea water are more

readily arrived at for the static case. Subsequently it will be

shown that for the normal range of temporal variations encompassed

by ocean wave phenomena, and for characteristic spatial scales

4of much less than 1 kin, the dominant components of the time vary-

S°ing fields are given by the same expressions as are the static

fields provided one includes time as an additional parameter
"in the source terms (hydrodynamic velocity fields).

We shall assume throughout that the ocean surface is per-
fectly planar with the cartesian coordinate system oriented such

that y is the local vertical, y > 0 defining the region above the

ocean surface. In most of the discussion (the exception being

Appendix D), the effects of the ocean bottom will be ignored,

since we are primarily interested in formulating problems for



the case of a deep ocean. Thus, for the purpose of analysis, we

take - m < y < 0 as the region occupied by sea water. Ration- I
alized MKS units will be employed throughout.

Let B = earth's magnetic field which is taken as constant,
V the velocity of the fluid, and aEor:C o the electromagnetic -

constitutive parameters for the fluid at rest. The induced
*J i electromagnetic fields are denoted by EB.

By assumption, V is not an explicit function of time
(steady flow). Therefore, in the "laboratory" coordinate
system, with respect to which the fluid is moving, the in-

duced static fields E,B must satisfy the following relations
[10]:

Vx x _ •( = (

0 ;y >0 (2a)
'• VxB=

GEE+ V x (B + B] + u pV + P V x (P XV); y < 0,
where (2b)

) P o(-1) EE + V x (B + B)] . (2c)

0 Z-0

±ne quantities on the right of (2) have the following physical
interpretation:

S•(i) GEE + V x (B + B_)]
4

is the total conduction current in the fluid, which is simply
GE' with

E' =E + V x (B + _):a~ - - B)
il

_ _ _ _ _ _ _ _ _ _ _ ___- . . . .. .j . . . _ _ __



2- the electric field relative to a coordinate system that is

momentarily at rest relative to the fluid.

7 (ii) pV is the convection current that arises from the-rspatial transfer of free electric charge by the fluid motion.

(iii) V x (P x V) is the dielectric polarization induced

current whose source is the electric field induced polariza-

tion charge transported by the fluid. This current is some- J
times referred to as the R~ntgen or Eichenwald current.

For y < 0, the constitutive relation between E and D is

E= oer E + Co(Cr-1) V x (Bo + B) (3)

- - The "free" charge density p is given by p = V - D

p oEOCr V - E + (E-' r 1 [V_ x (3 + B)] (1)

• In general, in order to solve for E and B, Eqs. (1-4) must be

! - supplemented by the equations of fluid dynamics together with

a spec1fication of boundary conditions for the particular

.Ceo..try. However, if the fluid velocity V of interest is

sufficiently low so that the induced magnetic field is much
s.-aller than the applied field, i.e., iI<< I 1-, the magnetic
"fIelds Bo + B entering on the right of (2), (3), and (4) may

td-e rePlaced by the prescribed field B , in which case the fluid
r 'eloilty V and the magnetic field B enter only as pr'escribed

forcing functions. This effectively decouples the fluid mech-

.niCs problem from the electromagnetlcs problem, i.e., the two

problems can be handled independently. We then assume that
t the hydrodynamic problem has been solved, yielding fluid velo-

t.- f4elds V(r) for y < 0. The electromagnetic field equations

nCw Simplify to
iji1



'• li0 ;y > 0 (6b)

V x

(0 Zy O 0(6 0VxB =1 o (E + V x Bo)+p + oVx) ; Y < 0, (6b)

r0
•J = o(er-1)(E +YVx Bo);y <O0 (6c)

D = E0 Or E + Eo(Er-l) V x Bo ;y < 0 (6d)

P=or . + -lV( x ); < .(6e)
Sp = C O r V - E + Co(Cr--!) V -(V x B~o) <(e

o- o.- -

Only V is prescribed for y S. 0. The charge densitj p (if any)

* must therefore be uniquely determined from V. We will now

obtain a connecting relation between V and p. Upon taking the

divergence of both sides of Eq. (6b), we obtain

0= o[V E + V- (Vx Bo)) + V- pV

=o v - E + O(V xV) - B_ + p V V V+ V P

We denote by w the fluid vorticity,

V x V w(7a)

and let
= B. (7b)

7 Also, tihe fluid will be treated as incompressible (V V = 0)

One then finds

V E (V Vp)

On the other hand, from Eq. (6e), one has

12
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P p 0 oCr V -_E + Co( -1) . (8)

After eliminating V E from the two preceding relations, one

obtains

o (_- (9)
o 0

which is a first-order differential equation for p. Let

and (10)
p = -- J.4.

0

The quantity 6 has the physical significance of a time constant
and is referred to as the relaxation time of the medium. The

differential equation for f reads

f + 6(V Vf)=

or

[! + 6(V- v)] f =

If
A 16cV• *v•) ! < 1 ,

and we also assume that t possesses partial derivatives of all
orders with respect to x, y, z, the solution for f may be ex-
Panded in the Taylor series as follows.*

•-= f = 1 : (_i)n 6n(v . V)n .

n= 0

Consequently, the free charge is given by

The assumption that Z possesses derivatives of all orders is
made here for convenience only, and is not at all necessary
for the validity of the final approximation as given by Eq. (15).From elementary theory of first-order partial differential
equaticns, it can be shown that the c!harge density p is given
explicitly and exaztly by the following expression (continued)

13



0 0

IP n n

0 " (V " 6; y < 0. (11)

Returning now to (8) and solving for V - E, we obtain

o.r- ( ) ;y 0,

Substituting for p from (11) yields

rrO

7 (-l n- 6 n(V n Cr-1

which is equivalent to

S" n n n
~~V 6. - = •-•(l (V_ V) .(12)

j~~ ~~~~ Byvrueo 5)oema e

• z__E=- Ve
B virtu of2 (5)co nes mayse

and (12) becomes the Poisson equation for the scalar potential:

i > ( ; y > (

SII •i ~~2 ] +_ " (-I) n (V. vn •;y<o(

(continued) t/6

p(0)e-t 6 - £o (t) +6 coet/ 6 e f '(s6) es ds

0 0

where t is a parameter measured along the fluid particle trajec-

SI tory and E' E d&/dt. Prom this result follows immediately that
for any t > 0, lim p -o as 6 0 0, provided only that j•'J is
uniformly bounded.

141
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1us, given a fluid velocity field V. (13) may be solved for

s, subject to the appropriate set of boundary conditions.
Once the electrostatic field has been determined, the driving

function (i.e., the equivalent current) in the generalized

Ampere's law statement (6b) can be expressed completely In

terns of known quantities. Thus we have

V x B Pole S (14a)

Sn _ . fln

a (E + Vx B)- V a(l 5(VV
0= ,,=o i

+ (-l) V x [F x V V(V Bo) + BoV2 ] . (34b)0!

Since E depend$ in V-, the source terms giving rise to the scalar

potential in (13) as well as the equivalent current in Amrere's

law (14) are nonlinear functions of V. Although such nonlinear

dependence on V may well be of great interest for poorly conduct-

ing media, they are of no consequence for sea water where 5 Is
very small. Thus, since = 1/36s x 10-9, 6 =c c !a Is small

oerr
for ali but good insulators. In particular, for sea water,

e •4, r= 80 so that £o /, is certainly a small quantity. Thus,
in the series expansion fo, p in (11) we need not bother with

terms for n > 0, and write, to a good approximation,

0 ; y > C (15a)IP

S; y < 0 . (15b)

For the magnetic field, this approximation amounts to dropping

!l! terms of order c on the right of Eq. (14b). We then have

B_ P 'OP., and

- ;15



Jt

<0 . (1.6a)
- x -

S.. a (-Vo + V x B y < 0 (16b)

Abe s':alar potential is given by

S. O'y>O

V20 = (7)

;y < 0

B. THE ELECTROSTATIC FIELD

We shall first obtain formulas for the electrostatic field.
it must be borne in mind, however, that all subsequent results
based on (17) need not apply for arbitrary a, in particular for
a = 0. Equation (17V is indeed somewhat peculiar in that no-
where does there appear a dependence on the -edium parameters.
Our guide as to boundary cond_•tlons must be Maxwell equaticns

• (5} and (16).. The first boundary condition is dictated by (5),
which requires that € be continuous at y =0, .e.,

* 0- ly (.)

The second boundary condition follOws from (16), which demands
continuity of the normal component of the total conduction cur-
rent o(E + V x B ) at y = 0. Since the normal coaonent of

I this curren�tIs identically zero at y 0+

_V x V , we att also (19e

N -=

p _ __ _ _ __ _



L I ,

In solving (17) subject to (18) and (19), it is instructive to
consider separately rotational and irrotational flow. For the

latter w 0, so that for y < 0, (17) reduces to the Laplace
equation with a prescribed normal derivative of the potential

at Y = 0 The solution for 6 for y < 0 is easily shown to be

1 V W'0,31 B0  - VT(x,0,z') B
l-1z)=.1 fdx' fdz' z -x.. oz

-! -= (X-X) + (z-z') 2 + yz (2-

Equation (20) also satisfies the Laplace equation for y > 0. Miore-
-over, 0 as given by (20) is continuous at y = 0. [Boundary
condition (18).) Consequently, (20) !s the complete solution

valid for -- < y < -. t may be shoun directly from (20) that

M - V- V (z,0,z) Boz (21)

which is jusz the prescribed boundary condition (19). On the other
hand, when the limit is approached from the positive y direction,

,te result is

lim V -. x,0,z) Bo + V.A,0,z) B (22)

y *0+

which is the negative of EO. (21). Hence 1 is discontinuous

acrossy =O0by twice the value Prescribed hbyf Eq. ('19).

This can also be deduced by a sy-..-etry ar.Vet : is an
even function of y, therefore - Tust be odd. Since 2y0j 'is also discontinuous, half of the jump must occur for

y 0- and half for y =0+

17
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With the aid of ]Eras. (21)s an.d (22) we can cipute the total sur'-

face charge at the interface:

P s - 05-+

= 2c EV f,,n.z) Bo- V (xoz) B 1 (23)
0 Z_ OX OZ

Note that c does not enter into the expression for charge. This

is a consequence of the approximation for the highly conducting

medi!! (Eq. 15).

Thus, for purely irrotational flows, the electrostatic field

above and below the ocean surface depends only on the tangential
components of velocity at the surface. In this sense, it can be
considered a Dure surface phenomenon. One other poitt Is worth
mentioning: formula (20) for the potential does not depend on
conductivity or any other .arameter of the medium. From thi,
one should not conclude that an electric field will be induced
by a flow in a medium with zero conductivity. For as has been
_pinted out in the discussion preceding (17), in the limit of low
conductivity (17) no longer applies since in that case nonlinear

effects associated with the convection current begin to dominate.

Next we consider the case of rotational flow. Unlike in

the case of pure potential flow, the right side of (17) will
not be zero. The formal solut--on for 0 will now contain

a volume integral of the product- of 9 and a suitable Green's
function. We shall denote this contribution to the potential by
_. From the linearity of the problem, it follows that we can

superpose the solution (20) and the solution to the inhomoge-

neous problem with the boundary condtion (18) together with the

additional condition

18
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- 0 = 0 at y =o- . (24)

For y < 0 we then have an inhomogeneous Neumann problem, so that

(X,Y,Z) = -dyf dx'f dz' G6(x,v,2;x',y',z') (x',y',z') ; y < o

(25)

where GS is the Neumann Green's function given by

GN(X,y,z;x',y' ,') = 0o(X,y,z;x',y',s') + G (x,y,z;z',-y',z') (26)

where

0 (x,,,z;x',y',z,) =- L{x-x')" + (y-y,)" + fz-z,) 2 ) . (27)

"(Note that in (26) y' and y are less than zero.) To obtain * in

the region y > 0, we utilize the fact that 4 must be continuous at

y =O. Clearly, fwr y > 0

•n•, ,f (x.y.z)-2-j dy,' dx' dI Go(%x.,.z;•'.,'.•') E(x,.'.,'.')•

for 4t reduces to (25) at y = 0 and satisfies the Laplace equation

0for y > 0.

19
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The complete solution for the scalar potential is then given by
the sum of (20) and 128) or (25). Thus, for y > 0o

O(Xs-yrz) 2fd= z G (yz,y,z;x',0,z') [V (x',0,z') B.

-I -

-Q o

-2f dy'f dx'] dz' G (X,Y.Z;x',y'z') W(x','z'

(29)

while for y < 0

.* 1--m -

mfso 0 d oV (205') Bhus, Box

Vx 011 2 Bz

-dy f dx'J dz' [G,(x,y,z;x',y',z1) + [V(Xyz-';-y',z')B

-m -- m - = -

4 if

* [z(x ,yZ') B•] (30)

Equations (29) and (30) are valid generally for steady flows, i.e.,
the flow can be. opartly rotational and partly irrotational. For
purely irrotational flow the volume contributions vanish, and one
again obtains (20). it is perhaps worth renarking that at this
point no explicit assumptions have been made with regard to bound-
ary conditions to be satisfied by the fluid velocity fields. Of
'course, the_ assumption of a perfectly planar surface implies that
the normal component of the fluid velocity must vanish immediarely

20



below the surface.* However, thus far we made use of the planar

nature of the surface only in the electrostatic part of the

problem.

lNext we consider the special case of pure rotational flow

in which the normal component of fluid velocity vanishes at the

ocean surface.** Quite generally, as long as we are dealing
with incompressible fluids, we can express the velocity gener-
ated by a distribution of vorticity as the curl of a hydrodynamic
vector potential • (vector stream function).

Thus, with
V V x (31)

the vorticity w is given by

V cVx _ (32)

Since the last is equivalent to

v - VV$ = - (33)

- j

This is, of course, not strictly corpatible with surface
wave phenomena in the ocean where a vertical velocity ofthe surface is necessary to sustain any kind of surface

- wave activity. For small amplitude (linear) surface waves,
this vertical velocity is treated as a small' perturbation
of an otherwise planar surface in which case this sur-facemay -also be treated as planar in the electromagnetic problem.
This boundary condition is usually adopted in modeling in-j ternal wave phenomena.

21



we have a differential equation for * with the vorticity func-

tion playing the role of a source. Since

V - _= 0 (34)

we can always choose the gauge

V - •= 0 (35)

which gives for (33)

V2= - (36)

It is important to keep in mind that "arbitrary" vector vor-
ticity sources may not be prescribed on the right of (36) bnt
only those having zero divergence (34). Otherwise the solu-
tion of (36) for t will not satisfy (35). We now assume that
the vertical motion of the interface can be neglected so that

the boundary condition on V is

Vy = 0 at y =0. (37)

Using (37) in conjunction with (31) and (35) leads to two bound-.
ary conditions on I at y = 0. Thus, Eq. (31) demands that the
vertical curl of the velocity be zero, which can be satisfied

only If

*x =* z = constant at y = 0 (38a)

Since the value of the velocity field as computed from (31) is
unaffected by the addition of a constant to the stream function,

we may set this constant to zero. The gauge condition, Eq. (35)
then yields

=0 at y 0. (38b)

With the aid of (36) and (38) the general equations (29) and
(30) can be put into a form which involves only volume inte-4grals. Instead of doing this directly, we will follow a
procecure which closely parallels that found in the published

22
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literature [7). This involves combining the hydrodynamic

equation (36) with the equation for the electrostatic potential

Eq. (17):

V2 (BO -* +.)=0;y<O. (39)

If we now set

B o +, , (40)

*t satisfies the Laplace equation

V2 ol' =0 ;-w<y < (41)

and the solution for * is

Y>0 (142a)

6 "- ;y< 0 (4,2b)

This form is employed in [7] where 0' is set equal to
zero SO that the electrostatic field above the ocean surfaceis identically zero. As will be shown in the sequel 4' = 0 is
compatible only with a rotatlenal flow with zero vertical com-
ponent of- vorticity. We shall elaborate on this point after we
have set up a general solution for I'. The solutlen of (il) is
completely determined by the boundary conditions at y =. From
(19) and (40) one finds for y = 0-

U-23
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a, a

i-5- y- B o " _ -Vz Box -Vx Boz -(43)"

V From the definition of the stream function (31)"

V •z -Y V _By •x

xaz z ax C

Substituting for Vx and Vz in (43) and taking account of (38b)
one obtains -

9-, _ y Bzaz at y= 0 (144)
S- ox a + oz

The second boundary condition on 4ý' follows from (18) and (42):

Oti -- B 4p (145)ly 0- =y -By
= y=O

where we have taken account of (38a).

Although (414) and (145) suffice to write down the complete solu-

tion for 0', we prefer to decompose 4' into a sum of three

parts, each arisIng from one of the three components of B , and

then add the result. In this manner the simplifications 4n the

final formulae that arise from a particular orientation of B-o
and the vorticity function are best brought in evidence.

Accordingly, we denote by 01, *y, 0' the potential functions
Suy z

due to the x, y, z components of Bo,

214



respectively, and write

I
* 0'+0 +' . (146)
x y z

First, let Bo= Boy 0. Then from (45) Cz is continuous at

y = 0 while its normal derivative at y = 0 s Boz jz The

potential 4z is then given by a formula similar to (20), viz.,

'z~ (xyi) (x",o,z")02 z, d[,,dX4 '.z(XY'Z) 21 dB~ d" z" _Y[x-)2 i

+ (z-z") 2 + y2] 2  (47)

which holds for -• < y < - by virtue of the continuity of 0' at-

y = 0. We would like to express the final result in terms of

the volume distribution of the y component of vorticity. This

can be done by first solving for py in (36) and substituting

for 3-, in the integrand of (47). By virtue of the boundary

condition (38b) the solution for a in terms of to reLds

y

4~~~~~y ii(xouc corints ','zz Wil)he(1ptaio4 tri)t
where G Nis the Neumann-type Green's function defined in (26)

Sii

and y" < 0. After (148) is differentiated with respect to z"
andsubtituted in (147) the integration with respect to x" and

i" can be carried outleaving a three-fold integral over the

forward, it is somewhat lengthy and has therefore been

25
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relegated to Appendix B. From Eqs. (B-1) and (B-Il) the result
is

4/ V *z(X,Yiz) E- B. v' (.Ofa Jdz Kz(x,y,z;xt,yt,zt~w(?y~t

"where

K Z(XYZX-y-,--) =-___ 1
2r..P-P'j fk-p'I\i-'I+yy

(50)

and

X--= Q(x-') + (Z-Z,)?

and where t!he C-) and (+) signs refer to y > 0 and y < 0,
respectively.

*Next we set Boy = Boz = 0 and com~ute 0x. From (415) ne
again find that 1 is continuous while at y = 0-

Box ; Hence

I'(, = = [ (x-x'')
" x(z +2w f d] ax)

+ zz) + y11 2 (51)

26



Again 0y is given by (48), and the final expression for * in

terms of the vorticety. function may be written as in (49):

0 C

4x(y'Z,z) =BoxJ dy'fdx'fdz' Kx(xY'z;xtI'yZt) '83 (xt"y'Z').

(52)

he expression for may be written down from (50) by simtply

interchanging t-z')with (x-x!). Thus, one obtains

2w (f,,,;x t ,y',s') - h - 1 "y )
: 2•, !_p_' l Ip--_[p_-' ':+(yy)

For the third and final case, viz., Box B = 0 , we have
the following boundary conditions on 6A. From (44)

y - 0 at y = , (54)

while from (145) ~'is discontinuous across y =0 by the

amount*

- I- =Bay 4iy(x2Oz). (55)yI- y =+ iy = 0

*This discontinuity produces no anomalies (infinite
voltage, etc.,) since by virtue -of (4'2) the true
electrostatic potential is continuous at y = 0

27



nT•-is case is therefore distinctly eifferent from the two

previous cases. First, since we are dealing with the homoge-

neous Laplace equation, (54) demands that for y < 0 0; = 0

* (br a constant,-which we are at liberty to set equal to zero,

since we are not interested in the absolute value of the po-

tential). For y > 0, we obtain subject to the boundary con

dition =0' T= Boy (x,0,z). The solution to this standard

problem is

0'(x,_%,z) =2B Vf dx fdz" Go(x,y~z;x",0,z") p,(X",0,z").

(56)

Again, we employ (.48) and wri-e the 1inal result

*'(x,y,z) = f dy' dx' dz' Ky(x,y,z;z',y',z') Wy(X',y!,z")

(57)

whereas shown in Appendix B, Eq. (B-I7),

I -1
_(1 ,2 -• (y-y,) 2 + (z-zi) 2 ] ; y > 0

-0 y < 0 (58)

We have defined K. = 0 "or y < 0 so that formula (57)
mmautomatically encompasses y < 0 -where vanishes. If we de-

"fine a vector K(x,y,z;x',y',z') with components given by (50),

(53) and (58), we can write the true electrostatic potential

in (142) as follows
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*(x,y,z) =

fB "_ ~zx,',' wC,y',Z'); 9
dy'f dx' dz' Bo K(X_,yz ,y') YX' ' "

-= -= -m (59a)

*(x,y,z)

Idy'j dx f dz' B K(x,y,z;x',y',z')w W 'y' z1) -_B6.j'x,y~z!
S-= -- -_M y < 0 (59b)

Equation (59) gives the electrostatic potential above and

below -he ocean surface when the flow is rotational and

for which the normal component of fluid velocity vanishes at

the ocean surface. We observe that unlike in the case of po-

tential flow, Eq. (20), the generation of electric fields by

pure rotational flow is a "volume phenomenon", i.e., 4 depends
on the distribution cf the vector vcrticity function every-

where below the surface. Indeed, (59) is nothing but the trans-

formed general Eqs. (29)(30) specialized to pure rotational
flow. Evidently for pure rotational flow, the surface terms
can be expressed as in~egrals over the vorticity function.

Indeed, all that was done in arriving at (59) was to cast these
"volume" contributions into a special form. There are certain

features that are obscured by (30), but are brought out explic-
itly by (59). For one, we notice that the electrostatic

S potential above the ocean surface arises entirely from the

vertical component of vorticity. Thus, unless there is a non-

zero vertical vorticity component, that portion of the electro-

static field that is induced by rotational flow vanishes

identically above the ocean, surface. In this case the electro-
static potential below the surface is just the negative of the

scalar product of the earth's magnetic field and the vector
stream function.
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Con'sider now rotational flow in which the vorticityfvnctjon is purely horizontal (in which case Eq. (59) Yields noelectrostatic field above the ocean surface). We first showthat in this case it is not possible to construct a vorticityfunction that is unidirectional unless it exhibits no varia-tion along this direction. For without loss of generality wemay assume this direction to be the z-direction and we have
-=o "w Since, by definition, V._. = 0 [this conditionwas used in arriving at Eq. (59)], -z 0, 'which clearly showsthat , cannot vary with z. Consequently, a single unidipec-

I •io4aZ vorticity component is consistent only wlth a two-dimensional problem.
Ve now consider an important special quasi-two-dimensionalproblem. We s-ppose a curely rotational flow problem in whichthere are only two nonzero "relocity components Vx(x,yz),V (x,v,z)- The comDonents of vorticity are

Wz = _ 
-a)

W x 
(60b)*Y 3V

W - yx 3
T -he variation of the velocity fields with the longitudinal

(z) direction is small, then w and w. will be small, and the"4flow field would be expected to resemble that obtained for astrictly two-dimensional flow pattern in which X - w = 0.Although such an approximation may be adequate to describe theSn.ior features of the hydrodynamic problem, the same cannot be

i i3
i ., 
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sa-d with regard to the computation of the electrostatic poten-
-tal. For the potential depends on the integral involving_3_,

taken over the whole fluid volume. In particular, the in-
tegration in Eq. (59) extends over the entire length (z-direc-
tion) of the flow field, so that locally small longitudinal
gradients of the horizontal velocity do no" necessarily imply
that their integrated effects will also be small.

If a purely horizontal vorticilty function is not unidirec-
tional, then the two horizontal components w•x w must satisfy

•!•x z~

i.e., the transverse divergence of w vanishes. This condition is
actually satisfied by linear internal waves at frequencies sub-
stantially above the inertial frequency (i.e., in the absence of
Coriolis effects). Internal waves under these circumstances will
not induce any electric field above the ocean surface. By con-
trast, surface waves necessarily give rise to electric fields

* above the ocean surface. The corresponding electrostatic* po-

tential being given by (20).

C. THE MAGNETOSTATIC FIELD

Having determined the electrostatic fields, the magneto-
static fields are determined from (16) subject to the continuity
of tangential components of H across the interface y = 0. Also,
since the magnetic properties of air and sea water are essenti-
ally identical, the normal component of H at y = 0 must be
continuous as well. We solve (16) for H by introducing the
Lorentz vector potentlial A,

Here we are jumping ahead of the story since we have thus
far considered only the purely static case.

I
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( •- .. .. . . ..

-- oH V -x A (61)

and choose the Coulomb gauge

V*A 0. (62)

Substituting .for H in terms of A in Eq. (16) and employing the

identity VxVx = VV--V 2 we obtain

V2A

-I 0 - -o-V + V x B) ; y < 0 . (63)

From (16), (61), and (62) follows that the boundary condi-

tions on ' are continuity of each component and its normal
derivative. This would also be the case, for example, if the

equivalent current density Je

SJe a (-V + Vx ) , (61)

were prescribed in free space. Since, morecver, we constructed
• •_our scalar potential such as to ensure that V-J = 0 everywhere,

"(including at the boundary) the problem posed in (63) can in-
deed be solved with the aid of the free-space Green's furctlon.

•-•I i•Hence,

_ 0
•) ~-_(X,.,.•)- f d,.f dz-.f dx. C(.,.-. o(x.,Ys:'.,'-Z')

(65)
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The vector potential A arises from two partial contributions:

the direct source contribution from the Lorentz force term

j =U(VxB , (66)

and the contribution from the conduction current whose source

is the static electric field -V. below the ocean surface.

Evidently, since # as given by Eq. (30) involves a volume

integral, the partial contribution to A from -aV# in (65) re-

quires two-volume integrals over the fluid velocity components.

This two-fold integration can be reduced to a single integral

and the total vector potential can then be expressed as a
single integral involving only J(s) in (66). That such a

representation should be possible is evident from the fact

that a(V x B ) is the primary source (excitation) of the el-

ectromagnetic fields. However, the Green's function kernel

"entering into such a representation of A will no longer be G

as in (65).

4 Instead of carrying out the rather cumbersome steps of

reducing the double-volume integral involving the electro-

static potential contribution to a single-volume integral,

we shall obtain the final result by an alternate route.

Clearly, the distinction between the representation (65)

and any alternate one is in the choice of the gauge condition.

For example, (65) is a consequence of adhering to the Coulomb
gauge, Eq. (62). Alternatively, we could have employed the

Lorentz gauge:

j0 (0; y> 0,

V A
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The detailed derivation of the fields for this choice of gauge

is presented in Appendix C.

As a ccnsequence of this choice, the vector potential A
*fnow satisfiesI o;y-o

'I V2 A =
-2y.(s) < 0 

(68)

The source of the vector potential now comprises only the dl-
rect Lorentz forcing term-_(s) = a(V x B ), and the solution
for A will now involve only a single integral over ýoJ(s)

weighted with the appropriate Green':. function. However,

this Green's function is no longer G as in (65). but a more
complicated Tensor quantity. This arises from the fact that

the boundary conditions on A in (63) at the planar interface
are no longer the scme as. thase for a vector potential gener-

ated by a prescribed current distribution in free space. While

the tangential components (A,,A z) and their normal derivatives

are still continuous at y = 0 (just as in (65)), the normal
derivative of Ay is discontinuous at the interface. The

.1 specific expression for A is

I

~~2w J(S)()Ar y d G(r,r'1) 1 (69)o f

where G(rr') is the Tensor Green's function with the matrix
representation
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S0 0 0

(rbr') = GX G G (70)
• i • yz

L 0 0 0

where G0 is again the free space Green's function. The other non-
zero compenents of 0 are

_ =I- __ (x-xt) (P-P,)2 + (yV-yt)2_.j:i;y,i
•i "Gyx(r,r, ) _(-- _a-)

; I I r-- -'l = • ! • --11 + 2yT y )

•! Gz1 ( ) Iz-z') (pp,)r + (yj:y,)2_

G yz (r,r') - -- -- (71b)

4w IR~RI 2 +(y jy,)2

, .. G (r,,r ) =I• Go(x,y,Z;x',y',Z') -Go(X,y,Z;X',-y',Z'); y < C

(7lc)
where the minus and plus sign in (7Ma,b) pertains to observa-
tion points y > 0 and y < 0. respectively.

From (70) it is evident that the two horizontal components
of A are the same as those that would be given by (65) were the
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electric field contribution to J to be omitted. Consequently,
m-e

Ax and Az (and hence the vertical component of the induced.mag-

netic field) are not affected by the electric current component

generated directly by the electric field; the only component of
A that depends on. the subsurface electric field is A (which

y
contributes only to the horizontal component of the induced mag-

netic field).

Because of the use of the Lorentz gauge, the electric field
can be obtained explicitly in terms of A. Thus, the electro-

static potential is given by

3
I V -A ; y < 0

G(x,y,z) .j0; y >0,

0 ~ '- 0 (~~~'oz)- ay - -l~

where V' is the gradient operator with respect to (x',y',z').
In this form the expression for the scalar potential appears
substantially more complicated than the results obtained with
the aid of a direct solution of the Poisson equation, viz.,
Eqs. (29) and (30). Thus, while use of the Lorentz gauge leads

more directly to the final expressions f.3r the magnetic field
than the use of the Coulomb gauge, the r,-lative difficulty is
reversed for the electric field. It may be sh.wn that Eq.
.(723 reduces, as S-Mde" it must, to the expressions for 0 given
in (29) and (30). These equations, together with the expressions
for the vector potential A, Eqs. (69-71), provide a complete set

-of relations for determining the electrostatic and magnetostatic

fields generated by steady flow.

Nr
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11. ELECTROMAGNETIC FIELDS INDUCED
BY TIME-DEPENDENT OCEAN CURRENTS

When the fluid velocity depends explicitly on time (non-

steady flow) the electromagnetic fields are no longer static,
and Eq. (5) and Eq. (16) must be replaced by

VxE= -Vo '(73a)

E[E + V x B y <
V x H 3 - (73b)

co -3; Y > 0

where we have neglected both the displacement current and the
convection current below the ocean surface. For time scales
of 1 sec or longer

o aE (74)

so that the displacement current below the ocean surface can
be safely neglected. As was demonstrated in the preceding sec-
tlon, the convection current is of the order E x 0(1o), and,
therefore also quite negligible by comparison with aE. If, in
addition, we are only Interested in the dominant field compo-
nents, then, above the ocean surface, the displaeement current
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term and the effects of magnetic induction can also be neglected*.

On the other hand in order to understand the process of electro-

magnetic power transfer above the ocean surface, these terms must
be included. An exact formulation is presented In Appendix D,
and the results are employed in Chapter V-D in the discussicn

of electromagnetic power transport above the ocean surface.

With the displacement current and magnetic induction terms

omitted for y > 0, we have

- - y < 0 (75a)

10 y > 0. (75b)

Formally, this may be motivated as follows: Since V H = 0
everywhere, then above the ocean surfaceH satisfies the wave
equation

V2  32H

.c = (oco) being the speed of light in vacuo. The solution
for H can be written as a Fourier integral wlth respect to
the transverse coordinates, viz.,

-f. H(r) if d2 -i-p + (,t

' iwhere H satisfies

d4 + (W2 (sp)tfalI ~ ~~dy2 c K H=

SClearly, if << K (spatial scales of hydrodynamic disturb-
ances much shorter than the electromagnetic wavelength), one
can set c - •, or, which is the same thing, o c 0, 0o ÷ 0
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0 y(+VB >y<0 (76b)

We now examine the quantitative significance of the magnetic
*induction ter.below the ocean surface. As usual, we exress

the solution of Eqs. (75a) and (76a' in ters of potentials
S•.. . and 0:

oH=VxA , (77ax1 ~0--

.E = 1 -V -t (77b)

I JWith aid of Eqs. (17) and (77b) we find

vp 0 ;y > 0
+S L(V Aat+ ( (78)

Upon combining Eqs. (77a)(77b) and (76a), we have

V2 A - = = VV-A + joVO - pat( x0 B ; y < 0 . (79)

{• We now choose the Lorentz gauge [Eq. (67)] to obtain

V V2-0 _ a y < 0(

3A

S•These equations differ in form from their electrostatic and
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A

magnetostatic counterparts only in the presence of terms p G
BA

and U ., and in the fact that the electr~c field as given
0aA

by Eq. (77b) contains the time varying additive term -

These terms can be neglected for hydrodynamic effects with
horizontal spatial wave numbers K that are much greater than

5aaw (w - the temporal radian frequency). This is readily

demonstrated by vriting the solutions of Eqs. (80) and (81) as

Fourier integ.als with respect to the transverse (x,z) sc-

ordinates and time. For example, the solution cf Eq. (81)

can always be written in the form

drt) f e - a(y,c,w) d'K (82)

where a satisfies

d2 -

a - (K 2÷ iuaow) a f (yK,,) , K-

with f the Fourier transform of the right side of Eq. (81 )
with respect to t and p. Clearly, if the source func.tion f

is significant only for

K2 >> 11ow , (84)

oO aw on the left side of Eq. (83) may also be neglected, which
amounts to dro;ý.ing the time derivative in Eq. (81). The iden-
tical argument applies, of course, to Eq. (80). Moreover, under

the same conditions (viz., Eq. 84), the time derivative in Eq.

(77b) may also be neglected, so that E = -V. To see this, we
merely have to rewrite Eq. (77b) in terms of A with the aid of

the Lorentz gauge. Thus, for y < 0



E = VV-A -(85)

0

By representing A in terms of the Fourier transform as in Eq.

(8-'), we again convince ourselves that for ic2 >> oO a, the time

derivative in Eq. (85) may again be neglected. Under what con-

ditions is Eq. (84) applicable? If we define the spatial wave-
2ir

"length of the hydrodynamic disturbance by A = then with

= 2rf the inequality in Eq. (84) reads

<A < -- meters . (86)

Thus, at frequencies as high as 1 Hz, this "short" wavelength
approximation encompasses all wavelengths that are much less

than 1 km. Clearly, Eq. (86) encompasses the range of pre-

dominant ocean surface wave phenomena. Also, for linear

internal waves with frequencies as high as I1C 2 Hz, Eq. (86)

gives A << 10 knm.

The conclusions reached on the basis of the preceding

heuristic arguments are fully supported by the results ob-
tained with the aid of the exact formulation presented in
Appendix D. Consequently, the dominant electric and nagnetic
field components induced by ocean currents that depend ex-
plicitly on time are given by the equations of electrostatics

and magnetostatics in which the time variable enters simply
as a parameter in the fluid velocity field.
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IV. EXPLICIT EXPRESSIONS FOR THE MAGNETIC FIE1_D
COMPONENTS UNDER THE QUASI-STATIC APPROXIMATION

Having established that electromagnetic fields induced by

hydrodyna-ic phenomena with scale lengths much shorter than

1 km are governed by the equations of magnetostatics and electro-

statics, we now proceed to obtain explicit expressions for the

field components.

The induced mag.etic fields follow by taking the curl of
(69). The result can be written in the following form:

B(r,t) E v H(r,t)
0-

0 I

j --
j

where V(r',t) is a column matrix formed by the three fluid

velocity components V x(r',%t), V y(r',t), Vz(r',t-) and the square
matrix G(rr') is the hydrodynamic-magnetic Green's function.

* TtA• mattrix comprises the components of G in (70) and the compo-
nents of the earth's magnetic field Bo. Since the components
of G are different for observation points above and below the

water surface, we shall distinguish them by superscripts

+(y>O) and -(y0O). After tedious but straightforwara algebraic

anipulations * one finds:
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=x 011 oBy~ ~ r~ (88a)

xy+= ~ 1-up B VG~ +rr'

=uy B _ (88b)

G+

x ) pB :

G+ -pBaG 0(r.2r')

-ol 0y 
(89b)

yz 0OVT-ý 8c

§G up B +

+
=y . B * VT G (r_,rl)(0
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- - -.

=03.VOY 3~ _~ 3z ,E1)j (931a)

G7 Box G (rr') - _(rr')o-B- G_ ( (91b)
xy in ay o,[ - -r

a [B.- -L --G (r r') B B (91()

3G7

"alf Bnee spGt Bn tepoll l le
0 fi eX yoi ] O s

G7 = o 1  ') - -L G (rsr')j-B., G_ (r r) (92b)zy all Y3y 0axY

C 010 r G0 r~'El +B0r ~G(r

... rest arred to generatly coasses i hydrodynamic disturbarces

of veinterest: spat ,ianl ahic theol localiependen velocsian

field V is more conveniently expressed as a superposition in-

I tegral of traveling waves of the form exp(-i! P + iot). In

$the first class of problems, the volume integrals in (88) are

-best carried cut directly; 'for wavelike hydrodynamic distu~rb-

ances it is more convenient to initially express the components
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4,

•, B- of G as two-dimensional Fourier transforms with respect to p.
* For this purpose we define

G- (ror') = ( d 2)
S(~2w) ff Pq -KY"y e-

where p,q stand for x,y,z. Similarly for V(r',t) we write

-tO

fVr'f,t) V(k,.,y:,t) e -%.at d 2 kT (91)

Forming a square r-atrix of the elements in (93), and denoting

it by i(!kT;yy;) we have the equivalent form for (87)

B(rt) =f I BQT,yt) e4 d2k-- . (95)

S.with

I0
'1I !(IT,yst) =f dy, i (kTL;Y,y') V(kT,Y',t) (96)

416
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The components of G are found by taking the Fourier trans-
forms of (88) through (92). These transforms are readily found
from the corresponding transforms of Go, G G G as
determined in Appendix C. There it is shown that

,z (2v)2 d kT e __kz) e-kT__ (97a)

2 2ký

4x (ii 2 (9-

d 2 2e

Also,

- -2 1 e ek , (97c)

; 1 iT(p--') -kly.y'i -kY+Y'I
7y d 2kd ee e e (97d)

YY (2)-j 2kT

Upon employing (97) in (88) - (92) one finds the following
expressions for the elements of G

ji4



G~kT (98a)

*~! F k.kT(y-y)13 e (098b)

k___ -kT(y-y')

-cUBoy e (98c)

G i 0B GkT 2kTYe (99a)

a± -iou0  + OXz je (99b)

yy 2k T

11; zio lBoy -Z-e -(9-0c)

I ~2k,

Ikxkz -kT(y-y')G Gx -cip Bo - e (100a)
- 0 2 1r
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j = /B k k +BkTC~Y' (0b

--y Oz e 10b

al

G B=

Ix

(Bý B.e +k B0k +
1~0Y'~T I aT kZT Y

-(B)e- B e+ - _ Bo +J- Boz) ek( " y'<Y
OYkr OZ k.T kT Gy

(101a)

I kk k2 ~L (y+y') ek('y
* 

Lkz~o BB0 1 ) e Boy

0 B~
2 ýXzkTYyl 

kTYY, -. ,±z e +(Bib)
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up 0 k k, kT (y+y' -kT y-yl
kg, OY e-B ox (J.0IC)

aIC 
I.-

-x 2 T B + iB 0 e -iBa e I (102a)

kkB B B'e BeIr( -)t
2o0 oz y

zy2

B B z)e± Be

(1.02b)

zz

B Q(B0 -i-.! ) e +k1!-B+ ~(BYiBeOX Y+ y
/ k * \ -kg,,(y-y ) ,k/k k~(yy'

B1 oy+!Y- ex + _T BO+ pox)eLyyl ,<

(102c)
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V. ELECTROMAGNETIC FIELDS INDUCED BY
TRAVELING WAVE DISTURBANCES

The preceding formulas for the magnetic field components

induced by hydrodynamic disturbances in deep ocean are gener-

ally valid. Their practical application is, however, limited

to flow fields for which an adequate theoretical basis has been

established. Here we shall single out and discuss only linear

(small amplitude) internal waves and surface waves. The hydro-

dynamic background material is presented in Appendices A and E.

We first consider Internal waves.

A. MAGNETIC FIELDS INDUCED BY LINEAR INTERNAL WAVES

At frequencies well above the inertial frequency and in

the absence of viscous effects, and furthermore provided the

VisdlE frequency profile does not exhibit very abrupt changes
with depth, the spatial Fourier transforms with respect to the

transv-rse coordinates y,z of the internal wave velocity fields

are given by Eqs- (E-26), (E-28) and (E-29) of Appendix E.

ik r fl (k,_. -i+ (ko
VV 0 (y)IA (kJ e n P + e •LI (lohT)

x - " = - ý n--03b)

in,~ i(k,)t -ifl( t
~ - jOn(y) e'~ + A7Q)

n. Vn nrh
n

-1 n - N(I)t -~

S-= ~where "we have replaced K employed in Appendix E by k'T" in

-•' •consonance with the notation in the preceding section.

5. (k,
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Although the various quantities entering in (103) are defined
in Appendix E, we repeat them here for ready reference. The
0n are eigenfunctions of the internal wave modes satisfying the
eigenvalue equation

S+ q2'Y N2 o
+y aQ2V)-lj () 0 (1014)

-with 4 (0) = Sn(-D) = 0, D being the ocean depth. For-a deep

ocean it is reasonable to assume that D - • in which case one
of the boundary conditions should be replaced by lim ,& (y) - 0.

A mathematically meaningful problem would require that this
limit exist. This will be the case if the Viisgld frequency
profile N(y) is assumed to decrease continuously to zero past
some depth as, for example, for the exponentially decreasing
profile used by Garrett and Munk [8]. The An(kT) are modal
amplitudes which in general depend on the magnitude and direc-
tion of the transverse wave number; the dispersion relation fov
each mode Is denoted by fbeing the angular frequencyan (kT Inbin h angua rqec
entering into (104).

The components of the induced magnetic field are obtained
by substituting (103) Into (96) and employing the defining re-
lations for the matrix elements of ", e.g., in (98) - (102).
For y>0 the three components of the induced magnetic field are

B" i [(mc.) oy
B,(r~t) e d B - xB

ff fek~ *y)dy' [e(~ efl''cT~+ij-k e-in(-T) tj
n -

(105a)
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io e- PkTY d2( 'B + . B

B y (rY 21 oy kTt inkTl

.0 J eT yn (yt)dyf [AI(kT) eig k~ + A( , e jn'E~

f nn (105b)

.p 2 f kT k1IfB(') B -IBo

kT y tiQn(kT)t -Qk~]

! 2 e T n (y')dy' e +An(_) e-i +i lt]

n -

In the derivation of these equations use has been made of the

fact that (y) vanishes aty =O0and y-a so that

-'S0

eTY dy= dy'

q iFor y<O the expressions for the fields are somewhat more com-

plicated. One finds
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B.(r, t)=-~i e d2k,1x ~2 j

- ~~2~ ikx1 J..v kry 0Tf.i~it'~

1Boy[.(Y)-..e e -Y)y~ -T e (Id-)

n n

- . A~(IT) e nl~ (n T (106a)

B z (r1.t) = 0!f e1  d2 -,I

LaB 2k 2  ik)Z( )y Ye ("d

n1 1

(B (e ekT ..(.!ldyJ ek~yfe' #n(yt)dy)
- - y

e n
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z
fP

* -"
B (r~t) 0 e d2kT

* Boy e J y' e- #n (yw)dy: - e dyT e' n (y )-y

-e e .4nj(Yt) e dy' +e e dyjj

,T e + A-(k Ph)-e-ln 106c

The formulas for the induced field components above the

ocean surface, Eqs. (105a - 105c), can be writt.en in a more
r compact form. For this purpose we introduce the complex unit

vector a,

--(107)

Evidently ae = 1. One then finds that for y > 0, the spatial

Fourier transform of the induced magnetic field components is

B~iT~y,t)=

cu e a(a-B)n n(y') e TdY [A" n + An n
o 00 n f n dy nJ

(108)
while the induced field itself is given by
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B(r,t) = (,,y,t) e d- dT (109)

The relatLcnship among the three components of the induced

field is best illustrated by resolving its spatial transform

along the three mutually perpendicular unit vectors y t, t -o "

foeming a rtght-handed 2artesian coordinate system for each

wavenumber _T. The geometrical relationship is illustrated in

Fig. 1-
zI

,T 4

i FIGURE 1.
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The unit vector t points along the wave crest and normal to the
direction of propagation - of.the internal wave field. When

resolved along these three-unit vectors, B may be written as
follows:

Since 1 = t, one finds

]-BaD -o . (li.la)

B4-"- •-"

-ky 0 kiP tn

h n

Thus, each Fourier component of the spatial transform B lies en-

tirely in the plane formed by the verLical and the propagation
vector k,. Moreover, the vertical component of B is equal in

4 magnitude to the component along the direction o. propagation

and 908 out. of time pna-se. If the internal wave field is un-i-

directional, i.e., comprising only a single traveling wave,

the preceding observations apply to the induced field itself.

_n that case, the vertical and horizontal components of the in-

duced magnetic field may be considered as forming a circularly

polarized field, an. observation that has also been made by

Podney (7].

Thus far, we have focused entirely on the ccmponents of

the induced magnetic field. T"he most sensitive magnetic detec-

S-- tion instruments are superconducting gradiometers which measure,
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to a good approximation, spatial derivatives of the magnetic

field components. In order to retain maximum generality, we

shall define the gradient of the magnetic field relative to any

two nonparallel unit vectors,, L , I - I = 1 1 = 1..p -- I-p -

The magnetic field gradient with respect to direction L of the
_P

* induced magnetic field along the direction I will be denoted-q
by Gp Thus,

pq

G (r,t) = -V(B-1). (112)
pq -p -- q

Expressed in terms of the spatial Fourier transform Gp,(kT,y,t).

Pa-~t =ff e' G~(~y,t) d kT .(113)

Upcn applying formula (112) to (108) one obtains

G (kT.y~t)=

-sly 0 -19vt- p: -0-2 k_ e 7YU-a) (I -a) (aoBo df#(')e 'y- en e~n•-l n
-i~yjj!7% e edy I'e + An~---- q-- -aa) n.in n

-A

Note that Gpq = Gqp, which is a direct consequence of the fact

that in the quasi-static approximation employed herein V x B = 0

above the water surface.

Since only the relative orientation between the geomagnetic

field and the components of the induced gradients (or field compo-

.ents) is important, we may assume, without loss of generality,

that the geomagnetic field lies in. the xy plane, with the x-axis

pointing in the direction of magnetic south. As usual we denote
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the dip angle by *D so that

B ox= Bo0 C D (115a)

Boy =B 0 sin 4 D (115b)

Boz =0. (115c)

The total gecmagnetic field B may be written in terms of A ,
0

the magnetic latitude, as follows [71:

B B ._A)I/2
Bo = (I + 3 sn 2  , (116)

where A = in the polar region and A = 0 in the equatorial
region. The numerical value of B. in MKS units is

Bp = 6.2'i x0- webers

B- (or Tesla) = 6.24 x 107 pT . (117)

We shall also need the relation between A and the dip angle,

which is

tan b 2 tan A (118)

The total geomagnetic field B0 may then be written in terms

of -D as follows

l~Bp

B= p 1/2 0<_ -< V/2 (119)
0 (I + 'CosAi

IL.4'_th :he geomagnetIc field i-ing in the xy plane we now choose
three mutually orthogonal unit vectors which we denote by
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S-2 3£ and which form a right-handed cartesian system

Q(- x !=3 ) ; -i and -3 lie in the xz plane while- 2-

as shown in Fig. 2. The arbitrary angle

12

If~ If

FIGURE 2.

beteen £- and the .xy plane is denoted by a. Also shown is the
(horizontal) wave propagation vector I.S,, whose angle with the

x-axLs we denote by w. The induced magnetic fields and gradients

will "e expressed relative to I L2 3; the relative orienta-
tion of these unit vectors and the geomagnetic field is shown

in Fig.3-
I

SI~~) #0 I=IB W II MCL

MU 3.I _E
I-~~AL 1) I EDC USID

131=

FIGURE 3.
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From Fig. 2 one finds that the projections on £-I £2 and I3 of

the complex unit vector defined in (107) are given by

- a= - cos (w-Vi) , (120a)

-£"a- (120b)

1 -a sin (w-c) (120c)

With the aid of (115) and (119) we also find the projection of

a on B-- 0-

Bo
a - B B (cos w cos OD - isin_ D)

-'3/ (cos cosw - isin ¢), (121)
(1 + 3 cos2 *D)112

wnere we have employed the polar form for k.:

k= k, cOsw

k k- sinw .

With +he aid of- the preceding relations, the three comnponents
of the Fourier transform of magnetic field gradient for p i q

in Eq. (1!4) become

611
• -- -.-



-oas B cos(w-ci)[cos ODcosw-isizn
G2(1+ 3 CO2 •i/2 e h(i4,t), (122a) - f

1 _ ) o% sin2(w-c)[cos 4cos-isin Y6D %]e- k-1

S¢-[si1;" kT e h(%kTt), (122b)

2(L + 3 cos'
0

there h(-T t) depends only en the hydrodynamic aspects of the

internal wave field, and is given by

h(k.,t) C(0 n(y') e dy' [A_() e + ) (123)"--I ) Ln-h e l

From (122) we observe that for a unidirectional internal wave
spectrum (w = a:) G =G 0 so that only G the gradient13 23 12,3
of the vertical field component with respect to the wave prop-

agation direction*, contributes. This is in accord with the ob-

servation made previously that a unidirectional internal wave

induces no fields along the w-ave crest, i.e., the induced mag-
netic fields form a strictly two-dimensional pattern with no
variation orthogenal to the plane formed by the vertieal and

the wave propagation vector.

For future reference we also resolve the spatial Fourier

transform of the induced magnetic field B along the three
orthogonal vector £-! £2 " £3" We employ the notation B1, B
Sand B Thus, with tne aid of (121) (107) and (120) one finds

4 I

-acos(oc--) [cos OD cos*-isin D -4,,
B•( ,y~t) = ~ 2(1 + 3 cos' OD)1/(--t) -

which, by symmetry, is identical to the gradient with respect
to Y of the field component along the wave propagation
direction.
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cos OD. cosi.-isin ODT -kjT
B (k y~t)= -icii 0 B~ e h(k,.,),(~b

2(1+ 3 cos2 4D)1/2

sin(w-cz) Ecos iý cos-w.-isin. OD] -~y
Q: = 1e hct) , (124c)"O- 2(1 +3cOs 2  )

where again h(.,k,t) is given by (123). Note that the essential

difference between the spatial Fourier transforms of the gradi-

ents in (122) and the Fourier- transforms of the ie comz-pene-ms

in (124) is that the former comprise the additional multiplicative
factor kT, a direct consequence of the differentiation operation

along the horizontal coordinates. Indeed, we find the following

relations between (124) and (122):

12(1,.,t) = - kT Bl(1:T,Y,t) , (125a)

-2 3 (kT,Y,t) = - kT B (kT,,yt) 2 (125b)
23 3-

k kT

G,3ky~t, = -- sin2(w-z) B2 (k_,y,t). (125c)3 2 h

Clearly, for a unidirectional internal wave field (w = a), the
gradient is obtained from the hcrizontal component of the mag-

netic field through a multi-lia-ation by the negative of the
wave number. Alsd, for a maore general wave number spectrum,

the presence of k, as a multiplicative factor will tend to weigh

more heavi]y the short wavelength portion of the internal wave
spectrum. This, of course, is hardly surprising since the

- gradients are proportional to a derivative of the field com-

ponent with respect to the horizontal direction.
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We shall postpone the discussion of the application of these
formulas to the computation of the spectra of the induced mag-.
netic fields and their gradients until Chapter VI. At presentjwe turn to the development of similar formulas for surface wave
induced magnetic fields.

B. MAGNETIC FIELDS INDUCED BY SURFACE WAVES

The spatial Fourier transform of the velocity field associ-
ated with small amplitude surface waves in deep ocean, as given
by Eq. (24) in Appendix A, reads

-Ft -i2tV_ y,t) = e ± [A ) e - A-(I e + iy lT), (126)

where 2 is given by the dispersion relationship given in (A-20)
as

S= + r.T9 (127)
. We shall concern ourselves here only with induced fields above

the ocean surface.

With (126) substituted in (96) one finds for y > 0

~ i ht) ,(128a"

0o V

EL (• L k.Ik + i" hk N -b o %,,t) (123.)

where s 
'Th 

(1291)
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E (128) can also be written in terms of the unit projec-

tion vector a in (107):

So.-ky, (130)

!I(~l~t 2 e0 a(a*.-) h (k (130

The algebraic form is quite similar to that obtained for

internal waves in (108). When B is resolved along t1" £2" !3

in Fig. 3, one obtains expressions analogous to those in (124):

(P.t cos(w-c)[cos % cosw+isin

IL If+3co 2B e h(%,.A) (131a)

4mh~Tt P (113]b)OD sý-
.UPo Cos -6 cos,,isin -k

B ~ !~B 0 5 ~,) D(l .,.
S° (I + 3 cos• .

B.L%,y,;-a) [cl+3 cos2 -is.

For a unidirectional surface wave we may fet w = a. One

then observes that the induced magnetic field lies entirely in

the plane containing the vertical and the wave propagation di-

recticn 1; the verfical and the horizontal comrnonent of the in-

duced fields again are equal in magnitude and 90) deg out of time
phase, just as for unidirectional internal wave3. The Fourier

transform of the induced magnetic field gradlen; above the ocean
surface reads

+iap
-1 • ..,"t) - _ 0. . ... . .... ..a. ...B e....

2 (k 0 e t) - (132)
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When resolved along the mutually perpendicular directions

II" 2 3 in Fig. 3, the three gradients G G are
again related to the B1 B2 B3 in (131) by Eq. (125). Thus,

above the surface the geometrical and phase relationships among

the induced magnetic fields and gradients for unidirectional

surface waves and unidirectional internal waves are identical.
Of course, the distribution of energy in frequency and wave

number space in the two cases are, in general, quite different.

C. ELECTRIC FIELDS INDUCED BY SURFACE WAVES

Surface waves also induce electric fields above the ocean

surface. On the other hand, to the extent that Coriolis ef-
fects can be neglected, the electric field above the ocean

surface arising from linear internal waves is identically zero.

The last statement follows from Eq. (59a), which gives the el-

ectrostatic potential induced by a velocity field with zero
normal velocity at the ocean surface. Since this ccrresponds

to the boundary condition for internal waves, no electric field

can be induced for y > 0 if the normal component of vortic tv

is everywhere zero. That the vertical component of vorticity
vanishes may be verified directly from (103).

The electric field induced by surface wave motion follows

from (20). We first express the free space Green's function in

the integrand with the aid of (97c) and express Vz (x',0,z',t),

*V (x',Oz',t) in terms of their spatial Fourier transforms

z(kOt), V(k 0,t1. This yields

~~ -i k,,y (k Vir, O,t) B - V- Q:-,)
_ Ie OX. di 0 d -~

(133)
-wo

Upon taking the negative gradient and substituting for Vz, Vx

from (126) one obtains

Svt) - tT k (134)
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where

SE~_(T, y, t) = 72 a [(y.0 x IkT) - B~o e-T h0Tt (15)|

We now resolve E along - -2 -3 in Fig. 3 to obtain

(,t (1D + csD costw-a) sir-w(kT e ))h(_T,t) , (136)( (1 .3 Cos = %2 Ob

osa

2 32 sirmikT h(_k,t) , (137)

SCos O
~sin(w-a) sirm~- ho(kt (1)

(J + 3 cos2 OkT eTt) .(138)

Suppose we again consider a unidirectional surface wave,

i.e., set w = a. Then, just as was the case for the magnetic S

field, the electric field lies entirely in the plane of the

wave propagation vector and the vertical. We again observe that

the characteristic 90-deg phase relation obtains between the two

equal amplitude orthogonal components E and E2 . As the direction
of propagation is varied, the electric field attains a maximum

at w = a = u/2 (normal to the plane containing the geomagnetic

field) and vanishes at w = a = 0, i.e., when the surface wave
propagates in the direction of the geomagnetic field. Note ason

that only the horizontal component of the geomagnetic field is
responsible for inducing an electric field: when the dip angle

is 90 deg, all electric field components vanish. One curious
fact, which has already been remarked in Chapter II, is that the

electric field appears to be independent of the conductivity v.
-This independence is only approximate and holds only if the con-
ductivity is sufficiently high, i.e., when the nonlinear terms

on the right of (13) are neglected.
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D. PROPAGATION OF TRAVELING WAVE-INDUCED ELECTROMAGNETIC FIELDS
ABOVE THE OCEAN SURFACE

Although the preceding formulas give correctly the dominant

field components above the ocean surface, they fail to describe

the propagation of electromagnetic energy. For example, for

internal waves, only a time-varying magnetic field--but no elec-

tric field--is induced above the ocean surface. Under these

conditions, the Poynting vector above the ocean surface is iden-

tically zero, with the implication that no electromagnetic power

is coupled from an internal wave to the region above the ocean

surface. If this were really the case then such a time-varying

field could never be detected, since any detection process must

necessarily be accompanied by the extraction of a finite amount

of power. The electric field component that would account for

such power extraction is evidently set equal to zero once the

quasi-static approximation is em;loyed. Even though this field

component is "small", it must be large enough so that a product

of th_ form H E x co~nstant yields a detectable power level.

This constant can be nothing else but a suitably normalized

electromagnetic wave admittance. We shall presently find that

if the magnetic field is induced by a single mode internal wave,

the wave admittance is given by /c ° c/v, where c is the

speed of light in vacuo, and v is the pthase velocity of the
P

internal wave; the electric field component E entering into the
i product Eiy x constant is parallel to the ocean surface and or-

thogonal to the horizontal propagation vector of the internal
wave. The electromagnetic power transfer above the ocean sur-

face takes place in the direction parallel to the direction of

propagation of the internal wave. This electromagnetic power
* is transported along the ocean surface with the phase velocity

v . Structurally, we obtain an H-mode wave, since it is charac-

terized by a magnetic field component along the direction of

"propagation. On the other hand, a hydrodynamic surface wave

will be found to generate two types of electromagnetic surface

68
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waves: an H-mode wave, and an E-mode wave. The magnetic field

component of the latter is normal to the ocean surface, and is

neglected in the quasi-static approximation. The two electric
field components are retained, and are given by the formulas

in the preceding section.

We shall employ results from the exact formulation for

electromagnetic fields induced by general time-varying hydro-

dynamic disturbances as presented in Appendix D. In the follow-

ing, we first present a detailed discusslon for surface waves.

The structure of internal-wave-generated electromagnetic fields

then follows almost by inspection.

For simplicity, consider a single-frequency unidirectional

hydrodynamic surface wave of amplitude A, propagating in the

direction w = a (Fig. 3) with wave number K. As shown in Ap-

pendix D, the electromagnetic fields above the ocean surface

can be represented as the sum of two electromagnetic surface

waves; one designated as an E-mode (TM mode) wave (no H-field"
in the direction of propagation), the other designated as an

H-mode (TE mode) wave (no E-field in the direction of propaga-
tion). When subjected to the approximations

flu a
-'-- << I
"I0

-1o 1 ifl~o a

I + <<

the rields of these electromagnetic surface waves are given

by Eqs. (D-113) and (D-114). These approximations are, of

course, implicit also in the quasi-static approach Ecf. Eq.(86)].

The latter, however, encompasses the additional approximation
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of neglecting the displacement current and magnetic induction
effects above the ocean surface, both of which effects we
presently include. With the aid of (115) and (119), the electro-
magnetic field components of the'E a•rd H-mode assume the fol-
lowing form:

(1) E--des:
AQ B cos OD sBco s. -?i -iKp_ + iM

H '(xyzt) - ) e , 13

S"(1 + 3 cos2  e -

C, AQ B cos ~+, (3c
H, N(x,y.,2,t) =ý: D 4b P+ p b

11( l 3 cos2

)

(2) H-,--es:
"-•:r-:, I - Bcos t cosw+lsin 0J -k, -iK-p + e %M

1 K (I + 3 cos2 - OD)I12

i E (x,[o,z,t) = co- (eo) OD] -KY -i-p -

CAM %Acos * D cosk)'+i'Si -K -iK-P 4 ist

£iK(l + CO2 eD-,4h-
<I

These fields are resolved along the unpit vectors --£!2" -3 in
Fig. 3- The E-mode field comDlex, Eqs. (139). and the H-mode
field comDlex, Ea. (!40), may be interpreted, individually, as
a classic electromagnetic surface wave transDorting power along
the K direction (direction ±1 in Fig. 3). The group velocity

" "J and the phase velocity of these electromagnetic surface waves
are identical to the group and phase velocity of the hydro-
dynamic surface -_ve. it is also interesting to observe that
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these electromagnetic surface waves are structurally indistin-

guishable from surface waves that would arise in air above a

dielectric interface for plane waves incident from within a

dielectric half space and totally reflected at the interface.

The refraztive index of such an equivalent dielectric would

have to be extremely large. It is given by*

II
n -v sin 0

D

where v is the phase velocity of the hydrodynamic surface wave,p
8 the angle of incidence of the plane wave from within the di-
electric and e the speed of light in vacuo. One then finds
that n sin 0 - 107. Referring to Fig. 3 and Eqs. (139) and

(140), one observes that the amplitudes of the E-mode surface

wave components are =a•-imin- when K is normal to the horizontal
comoonent of the earth's field and that they vanish for K
aligned with the earth's magnetic field. One also notes that

the vertical component of the earth's field does not coentribute
"'Ito the E-mode fields. On the other hand, the H-mode surface
wave amplitudes depend both on the vertical and on the horizontal
components of the earth's field. W.nen the vertical component of

the earth's field is zero (e.g., in the equatorial regions) the
H-mode surface wave components vanish for K parallel to the
earth's field, and are largest when the sarface wave travels in

the direction normal to the earth's field. The real pGwer flow

in each individual surface wave mode is directed along the prop-

agat'-ion vector K. The complex Poynting vector for each mode Is

The vertical attenuation of these electromagnetic

Ssurface waves is actually K 1 , which factor

has been approximated by K in (139) and (140) since

V «C< 1.
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A2  1o2 -123y

K 2(1+ 3 COS OD r 2 -w e U-11a)

_ýi• +2 3 'Y os 2 (=3

S-- ~A 2 - ;2 c D COS% + •€

=32hO3 (1 + 3 )it,) .(l)

The real part of P= and P_. is directed along K(_i) and reDre-
sents real power transport by each surface wave; the imagin.ry
parts are directed along y(1 2 ), and correspond to time-averaged
stored energy required to support the traveling surface wave.
-The negative sign '.f the imaginary Dart of P_ indicates that
the stored energy is predominantl- in the electric field, while

the opposite sign of the imaginary part of P shows that for
the !-mode the time-averaged stored energy is predominantlyy mag-
netic. Note that the real and imaginary parts of P_ .. are equal
in magnitude. This is a corseouence of the equalit- of the
transverse and longitudinal (K-directed) field components ofthe e=onimous modes. The complex ?oynting vector F for the

total surface wa-ve complex, eorisiong, the E' and H-surface --a"ve•
m -ode 4.s

(142)

The last term represents couling between the two surface vave
modes so that P j P.. + in general. In particular, this

coupling leads to real power foow l --3" (i.e., crthogonal
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S. .. • • - -• ••• ,-• ;

to the direction of propagation of each of the modes) of the

-amount,

-2Ky A 2 GEBR o Ol~D s:L D
Ren -£- =e P"- (X_)

-5 1K(l + 3 cos2  )

If w = 0 or (and) B 0, this term vanishes, in which case
ov

only an H-mode is excited. Similarly, there is no coupling

whenever Bo = 0. (Only the -- mode is excited.) The rati.-io

of the magnitude of the real power transported by the E-mode

1%6,o that transported by the H-mode is

o) -s ((!S)
t.CM' + Sr

Since G = 4 mho/- , ,- (3=77)-• ohm-2. and K for surface

Iwaves is on the ord~r of unity or less, the power transported

by the E-mode appears much smaller than that carried by the

H mode except for 20 and , i.e., when the latter

4anishe3. It turns out that when both mode contribut-ons are

j • non-var-- shing, the dominant contributor to the real par-t .f

the Pointing vector is not the E-mode or H-mode taken in isola-
tion, but the E to H-mode coupling term given by (143)- Under

these conditions the net re-i pozer flow is directed nearly

normrzlly to t~hee Drotiaation vactor K, i.e., along 13 in Fig. 3.
Thi& , may be seen from- the follc.ing considerations. The rag-

nzittde of the real part of the total Poynt-ing vector in (142)

'may be written as follows:

1 2K4 A 2 Bý Cy 2

% teP e 311D 0O

_K3 ( + 3 cos"
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If we denote the angle between the propagation vector K and the
direction of Re P byOK, one finds

4K2

cjini
tan = i2  

1'6)
-(16[ 0 Cs2 M2(1

The geometrical relationshi~p between Re P and K is shown in
Fig. JJ, below:

FIGURE 4.

hnus, if w 0 0, only in the equatorial region ( = 0) and the
polar region (0D = r/2) is the real part of the Poynting vectoidirected exactly along K. At intermediate latitudes. say A =z/4
(see Ec. (118)), tan OD = 2 and one obtains

(Kt e 5-- p 0 Pcosw

5T Taking n = 1 ad sez K= 1/9.8 rad/meter tan e -6.6 x 103 s.f:Ln1 I•

Tnus, unless w is nearly zero (i.e., the hydrodynamic surface wave
is traveling almost exactly along the direction of the horizontal
co00onent of the geomagnetic field), 6K= , viz., the direction

1 of elýectro=agne.tic energy transport is nearly normal to the di-
-• t rect en of Propagation of the hydrodynamic surface wave.
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To obtain some numerical estimates of the magnitude of the

electromagnetic powers, i.e., Re P, consider first = 0 (equato-

rial region). Then

2 3 B2
12 U2KyGcfl B

Re P ! A e-2 o 2 w-2 16K0 1.co

For 2 = 1, K = 1/9.8 rad/m, w = 0 and wave height- of Ia, one

obtains at the ocean surface a power density of approximately
i 6 x i-13 •t/2. in-tediate latitudes A = -5/4

cos 9D

and

2 X2 1/21

1 ~' 2  CI i 2

Again, for the same parameters as - :he .recedlr. one has at

y] = i-C, )•/

d - -

With w = 2. this yields Re I I x i- 3 attsl 2 --- abouz
200 i -e largers/nn in .

200 t-ines larger *an in the ecuatcria! region. Note that this

increase comes about sclel!- f-m-' the crcss-power tern- Tn the

pole-a region the cross-power term again 'vanishes, and the .DOwer

density is then carried by the ;--ode alone. One obtains in

this case - 2h x 10-1 watts/n 2 or 4 times the m--axizum Dower-

(at w = 0) in the equatorial zone. Although these power levels
appear remarkably low, they are we!l above the ambient (3G0 0 K)

therm-al ncise level. For example, a power density of 16-i0

watts/n impinging on a sensor of effective area of I cm" gives.
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10-14 watts. If one supposes that this power is contained in a

1 Hz bandwidth, then the equivalent "noise temperature" is

"5 11

T 10 7.24 x 109 OK
i eq 1.38 x 10-23

Sw&-=here 1.38 x 10-23 Joule/OK is the Boltzann constant.

At low frequencies it is customary to s.ecify detector
sensitivities directly in terms of field quansities instead of

electromagnetic power densities. When one conpares field
strength then the relative significance of the E-node and 17-

mode surfa2e wave contributions is somewhat different. Re-
turning to the fundamental set of field quantities, Eqs. (13z)
and (_4'0), one finds that because of the Dresence of ° as a
factor i. (139b) that the E-mode rives rise to a small magnetic
fieid, whie, c-r the other ha.nd, the H-mode Produces a small
eiectrzc f�e�d. This is consistent with the numerical values

o ;f th 4w r. v -meacs -E = - xs vert- large, -hl- -0 ao wve imedancs:,=) -.0o
7. is ver- smali. Thus, fcr the E-node at v = 0 with

M 3-112 x 10 Tesla (e=ua: -r-a zone), A =m, lr= i
::-I, 1=31 3 3 -2. u .volt., .ethe magnetic fied is

--36 9.8

-23 -a=3-53 x i Tesla = 3.53 x 10-i! ;T, which is well outside the
sensit1vity range of present day magnetometers. On the other

hand 31.2 P voltsim is certainly a measurable quantity. -The
"power carried by.¢ the E-mode is also cnal2,l VI., 3.12x1-x
3.53 x A02 z x 10-) - 8.76 x 0' -For an effec-S. 353i07)i0•.w•at ts/:n F.
tive sensor area of 1 cm2 this corresponds to a Ievel we!' below
thermal ncise at 300 0 K. For the same parameters for the H-=ode

7one has
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Poi l = .o!ilI=9.8 x 3.12 x lOý x 4v x 7

Z3.84 x lo-10 Tesla = 384 pT

which is well within the sensitivity range of current magnetic

J sensors. However, the corresponding electric field is small,
viz., jE2 j " (9.24= x 10- x 3.12 x 10-

=3.76 x 10- 9 volt/m = 3.76 x 10-3 U volt/rn. The power

carried by the mode is approximately 5 x 10-13 watt/mr2. For
2 8 Oan effective sensor area of 1 cm this yields Te= 3.62 x 10 °K

for a bandwidth of 1 Hz. In sumnary, the H-mode comprises

detectable magnetic fields, and a detectable power density and
an essentially nondetectable electric field. The E-mode
comprises detectable electric fields but a nondetectable
magnetic field and power density. It should be noted however
that this low power density corresponds to the E-mode itself,
and does not include its interaction with the H-mode. This
interaction power density is usually larger than the intrinsic-
H-mode power density.

We should now like to comment on the connection between

"t ful wave solution" in (139) and (140) and the corresponding

t ields obtained under the quasi-static approximation Eqs. (131)
and (136)- Clearly, in the quasi-static case H in (139b) and

jE.1 • (!40c) are taken as zero, the remaining field components
are, of course, identical. This may be verified by setting

= w h A " in (131) and (236). Thus, in the quasi-

sz satic approximation, the electric field is the vertical andi
longitudinal (directed along I ) field of the E-mode, the
small magnetic field in the transverse direction (t 3 ) having

i 
=3

been neglected. T.e only characteristic feature that may per-
m1t one to infer from the quasi-static result that the fields

in reality are part ef a propagating guided wave, is th.e 90-deg

I
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phase relationship between the vertical and the longitudinal
electric field components. Even though the transverse magnetic
field itself is nonmeasurable, it plays an indispensable role
in the mechanism of electromagnetic power transport. Finite
(measurable) power is obtained by virtue of the high wave

impedance of the E-mode. -Thus, since

E ~ (E)i (E
•E2 = -(EH where Z 377 •-with 1-- 0

2 3 SC0  v vp

the electric field E. is measurable even though IH31 is very

small. Similar remarks apply to the H-mode. in -this case the
quasi-static result yields only the magnetit fields, the ac-

companying electric field E3 transverse to the propagation
direction being negligibly small. However, its energetic inter-
action (in the sense of power transfer) is facilitated by the
fact that the wave impedance for the H-mode is very small, viz.,

z(H) c (H), 37.7 - , so that H2 = E3/Z is again I measurable

cuantlty. Of course, even a single hydrodynamic surface wave

generally generates both modes, so that transfer of electro-

magnetic power is not directed along K. It Is of interest to
contrast this picture with that correspondibig to a _-nidirectional
internal wave. (For simplIcity assu;e that it comprises only a
single mode.) We first recall that the quasi-static approxi-
mation in this case yields only '_agnet~c fields, which are quite

similar in structure to the magnetic fields generated by a

surface wave, and which we fourd to correspond to an H-mode.
Evidently then, the internal wave generates no E-modes; conse-

cuently, the magnetic field components induced by an internal
grave must correspond to an H-mode ejectromagnetic surface wve.

Since the two nagnetic field components .have a~ready been
cotained unoer the quasi-static approximation, tihe only
additicnal comonent needed to complete the characterization cf

it-hs -ode is the transverse electric field E. Clearly, this
m3'
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component may be computed by multiplying the vertical component

of the H field obtained under the quasi-static approximation by
thewae ~peane (H) 0l~

the wave impedance Z(where n is now related to K by
the dispersion relationship for the int-!rnal wave. If more than

one internal wave mode contributes, then the electric field E

is computed by summing the individual contributions of all modes.

However, to the extent that the internal wave is unidirectional,

the total induced electromagnetic surface wave still corresponds

to a pure H-mode field and hence electromagnetic energy is

necessarily transported only along the K direction.

J7
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VI. SPECTRA OF ELECTROMAGNETIC FIELDS INDUCED BY
INTERNAL WAVES AND SURFACE WAVES

We shal! now- sunuose that t-h- exoressions for the electro-

magrnetic fields derived in the preceding section apply to a

typical realization of a stochastic internal wave or surface

wave process. T-hese stochastic processes will be Fnstined wide

sense stationary in time and spatially homogeneous in the trans-

verse (x,z) plane. With the aid of 1he analytical expressions

for internal wave and surface wave spectra presented in Appendix

E and A, .espectively, we shall derive the corresponding spectra

for the indi-ced ele-trcmagnetic field components and magnetic

fiel? -radients. These formulas will then be applied to compute

internal-wave-induced magnetic field spectra above the ocean for

the case of exponential stratificat ion. For surface waves, the

electric and =-a•_etLic field spectra will be obtained for the

?iers,! n-Neumann surface -;ave spectrum model. We first consider

internal waves.

A. SPECTRA OF COMPONENTS OF THE MAGNETIC FIELD ABOVE THE
OCEAN SURFACE INDUCZD BY INTERNAL WAVES

With the induced magnetIc field resolved along the unit
ZActors Z!., 2, £• in Fig. 3• we define correlation functions

-.r field caponents at a fized height y above the ocean surface

by

With V,U =-,,.3

We nox eAoiy (109) together with (!24) in f1!46) tc obtain



(oii B )R(o',2,',t";y) = (°"0 D

(1+3Cos 2,D)

fy f~f -Z•'-P'+iK"- p" -CK'+K"),
• •k_" •K" e e gv(w', E)& (•.?', E)<h(K_', t')h• (K_",t")>,V * ~~ff d'ffdKee

U -1(47)J

where
1

g_1(w,a') = Cos a-M) [~s% cs sn~ (148a)

gf(w,aE) = L - -cos OD cosw-z isin6DJ, (1'48b)

gi(e,a) = sin(wF-c) [cr ýb cos-,. -isin (148c)

Using Eq. (123), and Eq. (E-56') in Appendix E, one finds that

the statistical average in the integrand of (147) can be ex-

pressed as follow-s:

S• <h(. •,tI) -*•'c•,t")>

I--?
-1 LCK ("I ) + i. (-K')e )

n (149)

where

L,(K) A 'y e dy' 10• -Cc

The functions ¢n(K') are real and nonnegative, and are propor-
tional to the spatial spectra of the internal wave modes.

Substltuting (149) in (147) and setting t'-t" = o, f'-pIT = p

one obtains

• I



S. B )2i;--', (,TC,y) = ¢ B)

VP2(1+3cOcS 2 )

ffd2Ke e 5 L2(w,))) +(.K)e - () j K (151)

n

where we have defined

•gV•p g•q (152)

The elements of the temporal cross-spectral matrix 4v• (gwY)

* are given by the Fourier transform of (151) with respect to T.

Changing the variables cf integration from the cartesian to the

polar form and taking the Fourier transform one has, for W > 0,

(opBp))2

2()Y Kn(w) L 2[K n 2)] -iK (a) pcos(w-O)
e.. hi() nw) & de- n gýW(,CEi~g'rj[ w"M(• o ~ ) w

n n 0
(15-3)

where Kn W is the solution of n(M = g for K, and v W

dlnn(K)

I- is the group speed of the nth internal wavedK K = K n(w)

mode. In the special case of p = 0 (the sensors are collocated),

one obtains the spectral density matrix proper:

(oji B )2

4 (0,a'y)= 0 P2
- (l+3CoS 2#)

e f gve (w ,a)4n[Kon(),w! ' -d( 154)

Sn vgn"W) 0
-- i
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At this stage no special assumptions have been made with regard

to the excitation functions *n(K,w). If we assume that they are-

isotropic, i.e., that each *n is independent of W, then a refer'-

ence to the defining relations for gv, Eqs. (152) and (148)

shows that

)- (O,W,y) = D (O,o,y)= 0
* U 23

whl~e

-1/2e.(0,,,y)=-, [€ (O,Wy) € (Owy)]13 13 11 3

where

Y -" sin a-D
3,] sin2¢D 2 1cos2 D (1 + 2sin2 a)I# +E

in other words, vertical and ho-rizontal components of the in-

duced magnetic field are completely decorrelated. On the other

hand, the two horizontal components are partially correlated
with the correlation coefficient y13 which depends only-on %

an d 4D" At the equator ( = 0), b' 131 reaches a maximum value
of /3/3 at a = 30 deg. Generally, we can take the spectral co-

S...... here:'•ce function y (0,•,y),

j4),U02W~y:2viiy2C,:.ow .v".€°') Li. (155).

for v # u as an indicator of the directionality of the internal
wave spectrum. Thus, if the internal wave spectrum is perfectly
directional, we find that the coherence function between any two

orthogonal components equals unity for all a. Th_ direction of

propagatiOn of such a stochastic wave train can, in principle,
"" be determined by a spectral correlation measurement of Y12 or

I23. Consider, for example, a magnetic field sensor that provides

64i i
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"a simultaneous measurement of a horizontal and the vertical mag-

netic field component. If this sensor is rotated about a verti-

cal axis, the measured horizontal component coherence function

vill undergo several excursions between zero and unity. In par-

ticular, ir the direction of propagation of the wave train is

defined by w = w, we find that Y12 = 1 whenever w = a (mod z)

while Y23 = 1 for wo = a ± x/2 (mod s). Clearly, if the inter-

nal wave field is only partly directional, then results of such

a spectral coherence measurement can be used to estimate the

degree of anisotropy of the internal wave spectrum. Viewed

from a slightly different perspective, the discrimination on

the basis of directionality in wave number space arises from

the angular dependence of the gVP (w,a). These wave number pro-

jection factors provide enhancement of cross-spectral power of

a unidirectional internal wave field relative to an isotropic

one. A quantitative measure of this enhancement is the direc-

tive gain GVP, defined by

gV (w ,a)
G (wocl) -i 016
VI: 21r 16

"2 f gvP(w,a)dw
0

When v = •, the maximum of GVP may be interpreted as the "maxi-

mum power gaint " relative to an isotropic internal wave backgroundjwhen an ideal magnetic. field component detector is used to -masure
component v. The gain is rather modest. As may be seen from an

examination of Eq. (148), the largest directive discrimination
obtains for one of the two horizontal co monents. We find that

for a "-- u/2, G11 actains a maximum value of 2 for = 0 (equa-

torial zone) with w0 = w/4 (mod x/2); for a = 0 the maximum

directive gain for this component at 0= 0 eauals 8/3 with
wo = 0. Thus, the intrinsic spatial wave number filtering prop-

erties of a magnetic field component sensor afford only marginal

discrimination between unidirectional ar.d isotropic internal wave

spectra.
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When more than one collocated component sensor is employed,

each responding to a different orthogonal component of the in-

duced field, additional discrimination is possible on the basis

of spectral correlation. Note that in Eq. (156) G is infinite
2Pi

whenever v 9 2, indicating potentially perfect discrimination

between isotropy and unidirectionality. This is just a restate-

ment of the result obtained earlier in terms of the spectral co-

herence function. In a practical situation the discrimination

would, of course, not be perfect. Nevertheless, multiple compo-

nent sensors would generally afford a greater degree of discrim-

ination than a single e-omponent sensor.

In order to obtain numerical estimates of the magnetic
fedseronmu.maon on the partitioning of

energy among modes in mode-wave number space. We shall employ

the hypothesis of Milder [9] according to which the modal con-

stituents comprising the wave number energy spectrum of internal

waves are distributed in proportion to the square of their phase
velocities. The functions *n(K) are then given by Eq. (E-73) of

Appendix E. The correlation functions In Eq. (151) then become

I (�op2 B

-!(,,•,,y) = 0•

Sj~~~iK__ jy v(w,a) FIK, (q() -•(IT

d JJdKe _e '~ ~~L(K) 94(K) 'IK)e n +I-(-K)en-- Z3 d . n--

-• n (157)

The quantity I(K) is an excitation function whicn depends on K

but not on n. It is this last feature and not the functional
form of 1(K) which is crucial to the validity of the closed

I form expressions for the spatial spectra given in the sequel

and Appendix E. The spatial cross-spectrum is evidently given

* Iby
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oZ (KY)=

(pB2 -2Ky 9,,(w)
op (oB,)2 e QL(K) •(K) (158)

2f ! l+3-os 20 K3  h n

so that

mR (p,O,y) =f e S (K,y) d K (159)

The sum in (158) can be expressed explicitly in terms of the
Vais~la frequency. The required formulas are given in Eqs.

(F-6) (F-7) and (F-8) of Appendix F. If in addition we employ

the definition of L (K) in Eq. (150), we obtain
0 0 -.

.n n ~CfT2 f

where n (K) is gv b [F-) Yafhe d] a assumng
deep ocean. After carrying out the integration one finds

L21K) W~(K) f y2N,ý2(y) e 2ydy .(161)j

hem right side can be evaluated for any specified Vais~l9 fre-
quency profile**. Therefore, the effect ef different oceanic

Note that g(y",y') = g(y',y").

It is important to note that in Eq. (161) the Vlisilg
V ~~frequency profile N(y) must tend to zero as y -+-

sInce we used the g(y",yv) function for the deep ocean,
Eq. (F-8). Thus Eq. (161) is not valid for a constant
N. A formula similar to Eq. (161) can be derived by
using Eq- (F-7), which formula would then hold for an
ocean) of finite depth and arbitrary N(y)(in particular,
for N() constant).
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stratifications on the spatial cross-spectrumm of the induced

* components of the magnetic field can be computed without the

knowledge of the internal wave eigenfunctions and disper~sion

relations.

The integral in Eq. (161) will be recognized as the LaPlace

transform ofyN 2( From the asymptotic theory of Laplace

transforms we-know that for a ccntinuous Drofile the behavior
of this integral for large K is determined (y) and its

derivatives for small values of y, i.e., near t~he ocean surface.

Thus, a jump In y2N2(y) at y =0 gives the asymptot%-ic decay of

1/K, while a Jump in the first derivative constrains the asyMp-

totic decay to 1/y
2.

To complet-ely characterize the behavior of the spatial

spectrum in (158) one must specify the excitato faci t ()

4We shall assume an, excitation functi2on that is isotropic in wave

number space with a dependence on the wave number o-f the form

1(K) = CKP; the constants C and p are usually of semi-emnikical

origin. (See disCussion in Appendix 2, Section D.) Reasonable

values of p appear to be between two and uniLty. E-mplaying this

excitCation fu-nction in (158) together with (161), gives the

following result for the spatial cross-spectrum:

C (OU a B )2 _2Ky 20K1v
1+3co5% -ý

Unlike the assumed internal wave excitation function (and,

necessarily, also the spatial spectrum cf fluid particle dis-

placem-ent", the magnetic field component" cr-oss-spectra are not

isotropic but depend on w therouyn the trigonometric terms

entering In gw (w). At any poinlt above the ocean surface, the

asymptotic decay of S for large K is dominated by tye expo-

nential factor.
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We shall find in Chapter VII that the spatial spectrum can
be used to predict the approximate beha-.-or of the temporal spec-
trum observed from moving platforms. L "e we shall use it only
0to compute the r.m.s. induced magnetic field. Clearly, from the

definition of the correlation function, the average of the square
* of any orthogonal component- is

( (p,t,y)> : R (0,0,y) d2K S.(Ky) = f di S (K,wv) (163;
V Vffd'sKy j KdK dwSVUwy

-• 0 0

The total r.m.s. induced magnetic field at any point above the
ocean surface is

3
Brs(y)= <j B.?> (1614)

The integration over w involves the wave number projection fac-

tors (148) and (152). One finds

21r
J gl!(wa)dw = - [sin2 D + 1 cOD2 (165a)

': g3•(w,"uld' = sn= cos%€,(!+2..scnk)] 15c

0

S( •'" Etployinggle Eq. 1( _162) I.n Eq. (163) and adding the three integrals 1

= (GUN?-eY Ny) (166)f-s " (!+d [:°-c2a) of-5 00

0--I-=I-

i!89
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• $1
"Az expected, the totcl induce r.m.s. field is independent of

the horizontal orientation of the geomagi etic field, but dependson the magnetic dip angle CD" There Is a difficulty in (166)

with the Lntegration over K, in that for typical profiles and

wave number decay constants, p, the singularity at K = 0 will.

cause the integral to d'iverge. This Iz simply a consequence

cf the assumption that the excitation function I(K) maintains

the power law behavior do-m to K = 0. In triuth, the who'e

"theory, both in its electromagnetic and the hydrodynamic as-

pects, cannot reasonably be expected to apply to arbitrarily

long wavelengths. Thus, in the internal wave part, we have

introduced simplifications to exclude the long wavelength in-

ertial range, while in the electromagnetics part we have relied

on the Guasi-static approximation with its intrinsic limit on

the maximum permissible length scale. The simplest way to elim-

inate the divergence problem in (166) is to truncate the lower

limit of integration to some non-zero value K = K . This is

also done in the theoretical discussion of internal waves in

Appendix E. We now assume an exponentially decreasing VMis~ld

frequency profile of the form N(y) = N(0) exp y/b. The inner

integral in (166) then yields

2 3
2Ky N(O)b

fy2N2(y)e dy (167)"- 1 (167))

and the formula for the r.m.s, field takes on the special form

Cb 32(0 1•BD)--+2sin.,20 / •Y -

B2(y) = -N(0) (o-x B )2 f dKe K (Mb+) 3 68)
32 oP (!+3cos 2')

OD K c

For p = 2 the constant C is given by Eq. (E-125). Substituting

this in (!68) and evaluating the !nzegral for p = 2 and y = 0,

yields

93

it4 ow'



B 2 (0)
rms

0 P (1+3cos 20) 3•V 1-V -2

where v, = K b, E is the avbrage internal wave energy density

integrated over the vertical water column, and p Is average

water density. Using the parameters extrapolated from Ref. [ 8

as discussed in Appendix E, we obtain v. = .327, E = ,382 x 104

joules/m2 , and b = 1300 m. With these numerical constants the

total r.m.s. field is

l+2sin
2

B (0)= x 13.76 1 I0- Tesla . (170)
ms i+?cos 24

The functional form of the decay of this field with increasing

y can be determined by carrying out the integration in (168).

Evidently, the decay is not purely exponential, as it is for each

individual spectral component.

To measure the magnitude of the r.m.s. magnetic field as

given by (170) requires a total field sensor that responds

equally to all spectral components in the temporal frequency

domain. The relative contribution of the spectral constituents

to the r.m.s. field ise determined by the temporal spectrum of

Sthe total fie-d B(t). This spectrum is defined by the relation-

shipD
4C

<B(t+,r,y) B(t,y)> = (BB qyeim• d,

In the special case T = 0 one obtains

-<B(t,y)> (,y) da, (172)
40 2z f ~BE~~?
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The r.m.s. field can also be computed in the following alter-
native fashion:

(B2(t,y)>= fflc)) 22 .~&~)+4 33(WYJdz (173)

The three spectra in the integrand are given by (15-) and are

just the temporal spectra of the individual components. it is
important to note that (DB 1 + 2 + (b- as one might be

11* bi 22 533 soemgtbtempted to conclude by equating the integrands in (172) and
(173). The mere fact that the integration in each of the two

cases yields identleal results gives one no information on the
relationship between tne tw-o integrands. Ciarly, there are
many different functions ("spectra") from which the mean of
B2 (t,y) may be computed through integration. For example, the
spatial spectrum in (163) is also such a function.

The determination of the spectrum of the total field
.requires the knowledge of the joint probability density function
of the magnetic field components, since one must be able to

comopute the average

(B,'t+T) B(t)> = ( E1(t+r) + 2(+- +. +2tT B%(t) +

(1714)
This operation can be carried out, :for example, when the induced
magnetic field components are assumed to obey joint Gaussian

statistics. The algebraic manipulations are rather involved
$ and we shall not carry them out. However, it should be apparent

even without a detailed calculation that as a result of the
complete overl2ap in frequency of the three component spectra

1 22 33he spectrum of the total magnetic field will
occupy a much larger bandwidth than the spectra of the individual

co-nponents".

The mechanism generating these additional frequency components
is, of ccurse, the same as in the run of the mill envelope de-
tector when used without a low pass filter.
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In the follewing we shall deal only with the temporal

spectra of the individual components. We use the mode parti-
tioning hypothesis as in (157) and again specialize the
excitation function to its isotropic form and power law

dependence on the wave number. The integrations over the

g9 (w,a) are then cayried out as in (165) so that the temporal

spectra for the three components become

SsnecD os DD(]+2.oszx)
i [1(3co) = Sc(wy) , (175a)

,[l+3cos 2 D]

!• isin2¢D + I os 26

-)1 (w 2=y) D -D S(,y • (17-5b)
22 c

1
1. sin 2A1 + I os 2D(l+2sinz2)

4-_ c Sc(w,y) W (%175c)•1i•J3(" 4[I+3c os2€D]'2

-i 4 The function S (w,y) will be referred to as the normalized com-

ponent spectrum. It is given by

Em  K (w)] 16

S (w,y) =2vr C (up B )2W4 j enL[K(C) (1)

"l ifl

0The w4 factor in this expression arises from the identity

W Rn[K n(w)"-

In order to compute S (w,y) for a. specified VIizHig fre-
C

quency profile one must determine the explicit form of the

eigenfunctions and dispersion relations. Recall that such

detailed information is not needed in the computation of the

I spatial spectra, Eq. (162), which are determinable directly

from the V-•isElR frequency profile i, thout the knowledge of the

K •93
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eigenfunctions. This simplified state of affairs arises en-

tirely from our ability to carry out the sum of Eq. (160). In

the temporal spectrum, Eq. (176), an analogous summation does

not prove possible since the modal index, n, also enters in

[--the factors [Kn(w)] /KM vgn(w). These provide additicnal

amplitude weighting that modifies the relative distribution of .

energy in frequency space.

We now proceed to apply formula Eq. (176) to an exponenti-

ially stratified ocean. The eigenfunctions for this case are

given by Eq. (E-107). The spectra will be expressed in terms

of the normalized angular frequency

7 -- N () 7Jii "-
N(O) being the maximum Vais~ld frequency. We also define the

dimensionless variable v, v = Kb, and rewrite the dispersion

relationship in Eq. (E-104) in the following normalized form:

T11 V (177)SI Xn;v

=where Xn;V is nth root of the vth order Bessel function. For

each n, Eq. (177) has one real solution for v, which we denote . I
by Vn. If one also employs the formula for the group speed

given in Eq. (E-110), the normalized component spectrum in Eq.

%(176) may be shown to reduce to

S(yw) = ir(OU B p•2) C p 0) )(n,y) , (178)

c ap B=l
.i i I

where the sum is over the dimensionless spectra

-2v X 43 - v-1 ' -n
b n n n dn

I ,.V ,%n/flo jvn(t) t (179)

2~ (vV)-~ ~ J t+m+. N/Tl( ) Vn t
vnil 0 n-

C4ll-- -• t
• -=-= c.,I



Note that the dimensionless quantity "4 is a function of n• sincef, v1n(V ) W Kn(w)b- The constant C is a function of p. For p = 1
and p = 2 it is given in Eqs. (E-12'4) and (E-125), respectively.

With b = 1300 m, the constant multiplier appearing in front of
Eq. (178) becomes

p4-" 2.25 x i0" (pYT) 2 Hz ; p = 2

lIw(oiiB ) 2 Cb N(0)=
2.66xi0" (xT)lo; p =1

For these two cases Eq. (118) was evaluated numerically. The

results are shown in Figs. 5 and 6. The frequency is normalized
to the maximum VFisild frequency of .833 x 10-3Hz. Figure 5
shows the spectrum o0 the horizontal component, viz., Eq. (175a).
Figure 6 gives the plot of the normalized component spectrum
S (w,y) from which tne spectra in Eqs. (175ab,c) can be obtained
C I

for any geographical location and relative orientation of the
magnetic field (see Fig. 3, p. 60). The largest difference in
levels between case p = 1 and case p = 2 is at the ocean sur-
face, and as one approaches the Vgisdld frequency.

7 B. SPECTRA OF MAGNETIC FIELD GRADIENTS ABOVE THE OCEAN SURFACEINDUCED BY INTERNAL WAVES

The expressions for the spectra of magnetic gradients can
be obtained bj a slight modification of the expressions for the
field components. We shall be interested only in the three or- f
thogonal gradients, G1 2 , G2 3, and G13, whose Fourier transforms

S~are related to the transforms of the field components by Eq. (125).

The correlation function between G,•, G, when measured at the
same height above the ocean, will be denoted by the four index
quaftity R vH rs(0,T,y). Its general form follows from the cor-
relation function for field components, Eq. (151), by including
the additional factor K2 and taking account of the slight modi-
fication in the angularly dependent factors g9, as determined

m from the inspection of Eq. (i25). We now write these new wave
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field induced by

waesA Ci nl an expoentilly tratfie

ocean-x , = 0). The small departure from

the monotonic behavior of the curves for y w 0 inFigs. 5-8 is not an artifact of the graphical rep-resentation of the data but can actually be ex-plained in terms of the decay *;haracteristics ofhigher order internal wave modes.
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- number projection factors as quadruple 1ndex quantities g

__= (wc). The correlation function for magnetic field gradients

- is then

2
W~r I+ 3 cos' O

CD -iK2 e2K Vwx) W2L(K KT -i~n(KrI
.f l en-- OK) (K e n + #n(-K)en

* (180)

The additional factor of 2 will be accounted fcr in the defiri-

- tiorn of g vp;rs" With the aid of Eq. (132) we have, for any set

of directions 1 , 1 U21 . I

la - B 12( •-• w,ci) = *4 a)(t " a)(1 - a•)(L -_a') I• "(181)
a) (I a* -;s

I312

For- the three orthogonal gradients of interest these wave nun-

ber projection factors are obtained with the aid of Eq. (120):

, ,= •B 2(•) [ %2 cos2 W + 1

912;12 (w,M) = -AsinW2-(-.z) Cos [•D Sir? #os % (182a)

%;3 SinO=- n2-'-) Cos (W)[1Cos #Ds wsin2ý 4b

S- sin 2(w-a) gi 2 (wa,) , (82c)

28 ]WuE (182d)
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F ~ ~ (W213( ) - sin 2(w-cz) sin (W-{z) [Co2 2

n - (182e)

Ig 13;13(ws 3 42  2CO (v' [ Dcos~w + Sir? #D

1 ='i1

:L -Sir? 
2(w-a) g22(wlctt

The other three projection factors can be obtained by an appro-* •priate interchange of Indexes.

For collocated sensors _ = 0. In this case a completely
Isotropic internal wave field ensures that the horizontal-verti-
cal gradients 12, 23 are completely decTrrelated from the horl-
zontal-horizontal gradient 13. On the other hand, partial cor-
relation exists between the two horizontal-vr~s grdens
Thus one finds that the spectral coherence function yI2;23 is
given by the same expression as Y13 on page 84.

'the general fcrmulas for the temporal crass-spectra for
magnetic field gradients are cbtained from Eq. (153) and Ea.

(154) by simply placing the additional factor Kttw) in the
numerator of these expressions and replacing En by 2gurs.
The qualitative aspects of the discusslon an pageo 34 arii 85applry also to gradients. The numerlcaJ values of the maximuma o

directive gain for gradient spectra 12;12 and 23;23 (i.e-. hor-
lzontal to vertical) are precisely the same as for the horizon-
tal field co=nonents. On the other hand, for the gradient spec-
tru- 13;13 (i.e., horizontal to horizontal) the achievable maxi-

- _- d.drective gain is somewhat higher. For example, for a = 0,
4V = 0, the gain turns out to be 128/27 vz 4.74 or 10.76 dB, which
corresponds to the wave direction w =Cos

I (j : 99 I
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Under the same assumptions as those underlying Eq. (162),

the spatial cross-spectra for the magnetic field gradients are

(ap B -2: -p4f 2Ky
S (K:,y) 0 P (g,;~,oL) e K ] YN21.2y) e dy

4D (183)

aFrom this we can compute the total r.m.s- gradients above t-he

ocean surface. For each of the gradients we have

<(G2  Evt>(~y 1'
V;rs f j f(

0 0

* - The total r.m.s. gradient will be defined by

G 2  2 .<G(y) <(G2  > + <3;J> (185)

We call the sum of the .su rst two quantities on the right of Eq.

(185hs the square of the to:al r.mas e horizontal-vertical

gradient GMT

I-•2 (yt)> (186)

The inr tegrals over the two projection "Iact-s entering in Eq.

"(186) are given by one e ac l of the expressions on the right of

Eqs. (1652) and (165c). Summing t~he two cont~ributions we obtain

I +32skr4 D O 2y p20 2Ky'
dK e KJ yv21;2(y*)e d"G2 - 0 0 C

• 111 p• :1 + 3(z2 D

(187)
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which is very similar to Eq. (166). The essential difference is

in the additional factor of K2 in the integrand. To obtain a

numerical estimate of the strength of the r.m.s. gradients, we

again consider the simple case of an exponentially stratified

ocean and take p = 2. We then find

G2(HV)(y) -Cb N2(o) I +3sinr? fdKe-K (188)

Note that the assumption of a nonzerc cutoff wave number Kc is

not necessary in this case since the integral is well behaved

at the origin. (Cf. Eq. (168).) However, Kc still enters into

the problem through its relationship to C, Eq. (E-125). (In

fact, Kc = 0 will yield C =-0.) At y = 0 the integral in Eq.

(188) equals 2• so that

2H)I 1 + 3sir?2 OD___
___ __ ___ __ ___ __ C (189)IQ (0) k~ B) 2 12t;V.+ vcos) # D l n -

c •c

For the same parameters as employed in Eq. (170), the total

r.m.s. horizontal-to-vertical gradient is

l(3sin2-% *0.655 pT/m . (1901

A+
1 13 cos #

We see that the horizontal-to-vertkcal r.m.s. magnetic field

gradient is largest in the polar regions (1.31 pT/m) and drops

1/4 of this value in the equatorial zone (.33 pT/m).

Although the value of .33 pT/m is not very large, it must

be remembered that it is compressed within a bandwidth of about

10-3 Hz. If the .33 pT/m were uniformly distributed within
this band, one would have a spectral density of about 100 (pT/m) 2 /Hz,
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which is several orders of magnitude higher than 1he sensitivity

of existing superconducting gradiometers (-.1 (pT/m) 2 /Hz). The

induced gradient decays above the ocean surface. It may be

shown from Eq. (187) that the decay is algebraic, i.e., as 1/y.

h•is slow decay is due entirely to the fact that the spatial

spectral mazinum occurs at K = 0. For a more realistic assess-

ment we should truncate the lower limit at K = Kc, in which
case the decay for sufficiently large y will eventually be

dominated by axp - 2K Cy/b.

The preceding calculation was carried out for p = 2. To
assess the sensitivity of the numerical estimate in Eq. (190)
to p, we now carry out the calculation for p = l. For this

case Eq. (188) is modified in two respects: an additional

factor of K appears in the integrand and the formula for C is -

given by Eq. (E-124). For y = 0 the integration yields 1/2b2 .

Employing Eq. (E-124) one finds for p = 1

i/.,6...l+-n' . :

S•r .1) = (4ovB)' - (191)
H 0 P l+3CiS2OD la .ob In l4V "

"CV

Comparing this wLth (189) we observe that the r.m.s. gradient

in (191) is larger than that given by (193) by the factor $

I - vJ In 1Vc

° I n• 1

For v1 .327, its value is approximately 1.52. Consequently,4for p,

G3~~ .H)():* / (192)
- 1+3 os'ý
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Thus, the value of p has a fairly minor effect on the r.m.s.
value of the magnetic field gradient. On the other hand, we

-hall find that the spectral distribution of energy contributing

to this r.m.s. gradient is modified substantially by different
choices of p, particularly for short spatial wavelengths.

We now compute the horizontal-horizontal r.m.s. gradient

given by the square root of the last factor in (185). For this
purpose we need the integrated value of the wave number projec-

tion factor g1 3 ; 1 3 " From (182f) we find

f g1 3 ;1 3(w.a) dw E [sin2• + os2, (l+2sin2a)], (193)

0 64 D

and with the aid of (183) the square of the r.m.s. value of the

horizontal-horizontal gradient becomes

2sin 2  + cos2#D (.+2sin2a)
G2(H,H)(y) ,_ ( B ) 2 -- ( si )64 0 P 4 (1+3cos 2 #D)

0
dKe-2Ky K-p+2 y2N 2(y,)e 2Ky' y194)

0 --

Comparing this expressio-n with (187), we note that the H-H

! jgradient is smaller than the total H-V gradie:zat. For example,

ts the equatorial zone (4D = 0) we find,

G(H H)
"V = J i2sgnz. (195)

G (H2)V(y]
'" ~rms L

while In the polar region (%#= -/2) i

S rms 1 i (196)

(H,~)Y) 32
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Wi~th ex'itation function I(K) cK-P, the temporal spectrafor the three principal gradients can be written in a form
similar to (175):

sin% + 2
'~i2l2('sOD COS 4D (l+2coslix)

i4f1+3cosz O] Sg (",Y).,(197a)

Ih[l+3cos2•D]-
= sinD + I cos 20 (l+2sin2Q)

62 [41+3cos2oDj S(wy), (197b)

where S (w,y) Is the normalized gradient spectrum given by

SgGWY) 22C (cyt0B )2 (4 e h (198)2_K(W

gn

For an exponentially stratified ocean, the normalized gradientspectrum follows from the normalized component spectrum in (178)
by Simply multiplying each term in the series by K (w) V2Ib 2 .Consequently, n

9 0 p n h (199)

with s n ().,y) given by (179). For b = 1300 m, the constant infront of the sum becomes

S2

.1331 x ~Os(P /Hz ;p =2

)1.576 x _L05 _ z ; p

iinI--

= 
- ~-"- a~Ž104~



A plot .of the spectrum of the horizontal-vertical gradient,
= , =0) E.197a), is shown in Fig. 7. Figure 8 shows

the normalized gradient spect-rum S (y,w). These calculations
g

have been carried out for the same internal wave physical para-
meters as It.he component spectra in Figs.- 5 and 6. One observes

P that the differences between the gradient spectra fo~r the case
p =2 and p 1 are quite pronounced, especially near the ocean

aP

WA IMf I -p no

I I f
FIUE7 oiotlat-etclgain

ofmgei iedidcdb

inenlwvsi a xoetal

straifie ocen (a 0, 0
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1i
surface. On the cther hand, it will be recalled 'cf. Eqs. 190

and 192) that difference in levels of the r.m.s. gradients for

Sp = 1 and p = 2 is rather insignificant (a factor of about 1.5).
Evidently, most of the integrated contribution to these r.m.s.

Svaiues arsesfromextremely low frequencies (and long wavelengths).

This is quite compatiole with the curves in Figs. 7 and 8, all
of which merge toward the lower frequency band edge.

Um _ . I. _I a

-'" i iXV U.A ff=J3130,i
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S~FIGURE 8. Normalized gradient of magneticmay field induced by waves

"•-• in an exponentially stratified
•i ocean
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I C. SURFACE-UAVE-INDUCED MAGNETIC FIELD SPECTRA ABOVE THE
,OCEAN SURFACE

The formal procedure leading to the expressions for the

"correlation functions and spectra of surface-wave-induced

electromagnetic fields is very similar -o that employed in the
S1preceding for internal-wave-induced magnetic fields. For ',-he

- magnetic field components we use Eq. (131) and obtain the

correlaticn between components v and V neasured at the same

height above the ocean:

'~- ii--(OVz B )2•,•~ mm •(P,2 ,--,t',t";Y') 2(+ o=•

f TJikK e e gýw,, ) .; CE,) <hs(K_'t') h*(K",t")>.

(200)

- i The wave number projection factors gvg are gi;en by Eq. (148).

The statistical average in the integrand is evaluated by ref-

erence to Eq. (1.29) and Eq. (A-2611 in Appendix A:

iiii <hsi'__' ,t')• h* (K-,t-)>

i !
(KK') e +6(K'-K) . (201)

-' IE• L Consequentlywith p' - p' = p, t' - t" = r, Eq. (200) becomes

11 I.
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2
(aoi B)

0P

VP ~ 1+3ZS #Ds

ft -iK-P -2KY -1[ f(r
Jfd 2K e~ e K gvP(W,cE) 14'(K) ei(K- + gi(-.K) e. (202)

Taking accodnit of the dispersion relation R2 = Kg the Fourier

transform of Eq. (202) with respect to T yields (for w > 0).

0
1+3 Cos2 

oD

W 
2 2w W_-.y.. -, --I-•pos(w-e)2

Se- f de g ~ wr~( 9 ) ,(203)

0

which for zollocated component sensors becomes

_o B)2 -yL2 - 0= " =e-r'e dw 8w (2014)
P 1+3 cos 2  

0

With the Pierson Neumann spectrum for 0 , , Rq. (A-38),

substituted in Eq. (2014) we obtain-1 - -108
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4'(O,W..y)
i -2-U

' .. •'9"• O BD)2. LoO 2y-'." 2g2j-2 U- 2 w 0 +i'/2

1+3 cos2 9V) f 'e5
______.-s g f 'w~a)'cos;(w-wo) dw, (2C5)

1here w is the wind direction, U wind speed in m/sec, and:•B • U 05 2 se-s
3.05 se-. As written, Eq. (205) holds for a fully

developed sea. T1n other cases the spectrum must be truncated
below the angular frequency w = w1 , the value of h,'Ich is deter-
mined by fetch and wind duration [Ii]. For a fully developedsea the spectrum is of the form W exp-_a -_/]for 0 < w <

which has a maximum at

"max =+

Since a 2y/g, =2g 2 iU 2, (206)

W •a(Y) =+ I - (207)max Y~ (237

At. the ocean surface this becomes

w (
max 12
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On the other hand, for w = 0, the spectrbm of the surface

wave displacement decays as &' (Eqs. A-34 and A-30) and

can be shown to have a maximum at w V g/U. Thus, the peak

of the magnetic field spectrum is shifted in the direction of

lower frequencies by about 15 percent. At high elevations above

the ocean surface

a2

wmax 
U2

so that

wmax( -

ta (0) r2 y)U
max (gy)

which shows that for la-•e y the spectral peak shifts even

further toward lower frequencies.

The r.m.s. value of the total field is found from

3 cc

B~rs(Y) = 2 •(O,a,y) dw (208V
t=l

The factor of 2 is used to account for the fact that Eq. (205)
represents a doublesided spectral density. After summing

Eq. (205) over the three components and carrying out the. inte-

•gratien over w, one obtains
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""2 1+3 sin2  D + 2 cos D coszwo

A B2  (y)= (ao Bp)
614 1+3 cos 2 #D

dw W" exp --2yf -2g2w 2Uj (209)

0

It may be shown that

fL5 C-' exp + 7 -C//2 = a-/+- 07 2 --- -

-s W {exp .-a.?0/w21 2 8 4-, 2 x+32 *}r*2

S0 (210)

With the aid of this fcrnula we rewrite Eq. (209) in the fol-

lowing form:

.1+3 sin OD + 2 cos 2 OD cos2 Wo
2 m(y)-l 40!-g(y 

2
1+3.si 2 1+3 cos2 #D(

* where • is the dimensionless quantity {c.f Ref. [6]3

N22

E ;(y)

T~2g2C Ci2%2 {1 .)7+ (S½(~ 11V() 5  3  2  f

exp ý4(212)
-- Igo

-
-e p 
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In the equatorial region, we have

B (y) B I/ + 2 cos2 Wo(y)rms pVo

while in the polar regions, B rms(y) = 4 B P(y). At the ocean

surface Eq. (212) yields

3 1
(0) = 2.197 x 10- U (213)

where U is in meters/sec). A plot of Eq. (213) is shown in Fig.

9. To gain an appreciation of the numerical values of C(0) con-

sider the equatorial region. There Brms(0) reaches a maximum

value of l.08 x 10' F-(0) pT (for wo = 0). Referring to values
of E(0) in Fig. 9, we find that B rms(0) ranges from the high

value of 8.64 x 103 pT for a wind speed of 20 m/sec to the low

value of about .4 pT for a wrind speed of only 1 r/sec. It is

of interest to observe that the high value of the r.m.s. field

is of the same order of magritude as the total r.m.s. field in-

duced by internal waves given by Eq. (170).

Above the ocean surface E(y) decays in accordance with Eq.

(212). Figure 10 shows a plot of E(y) as a function of height

abova the ocean with the wind speed as a parameter. The lowest

value of the ordinate corresponds to r.m.s. field levels of

about -1 pT. Note the sensitivity to wind speei of the loca-

* •tion of this threshold above the ocean surface. For example,

an. increase in wind speed front 10 m/sec to only 12.5 =./sec

increases the height at which this threshold level is reached

from about 400m to 700m.
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D. SPECTRA OF SURFACE-MAVE-INDUCFD ELECTLIC FIELD
S.. COMPONENTS ABOVE THE OCEAN SURFACE

The correlatiGo function among the three mutually per-

pendicular electric field components E1, E2 , E3 is obtained

from Eq. (136) through Eq. (138), by analogy with Eq. (200)

- -and Eq. (201). Thus, one finds

, %2 cos"

V11 •2(1+ 3 cos 2 #)

fJ~ ~i -I~~ p (E wcz 4 (K f(Kr-y. (1

(EE)

(E) (E~) = cswEi) si (216a)

(E)
I2  (w,a)=cos)-i )sinw (216a)

9(E)(a)=-isnw(1b

g;(w,a) = sinlw-cx) sin wi (216c)

The temporal spectra for p =0 become

2!- Bp Co 21 ')
+3 eo dit gý-V (w,ux) TWFý, w) .(217)

1- Comparing this expression with the spectrum for the magnetic

field components, Eq. (204), we observe that the two spectra

j ~are essentially identical except for the pr-esence of an addi-

f tional factor of w' in the electric field spectrum. Therefore,

at y =0, the relative high frequency spectral constituents in

IjL 115
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the electric field will be larger, and the eventual decay rate
of the electric field spectrum with Increasing frequency cor-
respondingly slower, .than, for the magnetic field. It is im-
portant to note that for v = i, Eq. (217) gives the spectra of
the Individual electric field components and that the sum of
these spectra is not equal to the spectrum of the magnitude of
the total electric field. The comDutation of the spectrum ofthe latter involves the same difficultiEs as mentioned in con-
nection with Eq. (174) for the total magnetic field.

After the expression in Eq. (A-30) for the Pierson-Jzeumann
surface wave spectrum is substitrt, ed in Eq. (213) one obtains

W(Olw~ irC 2P cos'-O
S(E)(o, ,y) = ______

--1 "2(1+ 3 cos2

2 y - 2 -22W

o w e gV (y)=2 Cs _.,dO ,,w) d. (218)

The total r.m.s. electric field ss now computed from the ex-
iDressio~n

3 C

V 0J

Fron Eq. (216)1 one finds

3
- (E)(w a) =2 sin 2 w

V=1

also
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!W +V/2
|i • sin2 w cos 2 (w-wo; dw = + (1+2 sin2 wo)

fW -NW/2
0

we then obtain

Co2 2 OD (1 +2 sin' wo) -
2  2 -2l

-2 Z-- •-%(l2+3c 2 4 do W exp -2g U-

At y = 0 we cap use the formula (220)

8W /- 3/2e- do = -'T

0

- With B = 2g2 -2 this yields Ax Substituting this

in Eq. (220) together with the numerical factors we obtain the

simple formula

E s(O) 2.21 • 2 pUvolts/m, (221)

1 + 3 cos 2 4D

where the wind speed U is in meters/sec. Thus, the r.m.s.

electric field at the ocean surface increases only as the 3/2

power of the wind speed, whereas the r.m.s. magnetic field was

found to have a U dependence (Eq. (213)). The dependence

on the wind diree~ion w0 (measured relative to the vria

* plane containing the geomagnetic field) is weak, as was also

found to be the case for the r.m.s. magnetic field (Eq. (211)).

* 4 The particular function-d dependence is,of course,a consequence

of the assumed cos 2 (w-w ) directionality of the surface wave

spectrum. A surface wave spectrum with a greater degree of

directionality will result in a larger variation of the in-

duc.d electric field with wo. In particu]ar, for a perfectly

- unid-i4ectional surface wave train, the induced field will

-1 117
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vary from its maximum at w0 w i/2 (wind direction Perpendicular
to the vertical plane containing the geomagnetic field), down '
to zero for w° = 0 (or, ur)(wind direction in the plane contain-

i:ng the geomagnetic field). On the other hand, in Eq. (221)

the total excursion of the r.m.s. field as wo is varied fromO0

to v/2 is only ,13.

The magnitude of the r.m.s. electric field as predicted by

Eq. (221) is certainly of sufficiently high level so as to be

measurable in the absence of other competing noise sources. For

example, for U = 10 m/sec, *D = 0, w = w/2, one obtains

Erms(0) Z 60 uvolts/m.

E. SPECTRA OF SURFACE-MAVE-INDUCED MAGNETIC FIELD GRADIENTS

The correlation functions for surface-wave-Iiduced gradi-

ents of the magnetic field can be derived with the aid of Eq.

(132) and Eq. (201). Alternatively, by recognizing that the

* formal relation between field components and thef.r gradients

does not depend on whether these quantities are Induced by in-

ternal or surface waves, we can employ the results of VI-A, and

thus obtain these correlation functions directly from Eq. (202)

by replacing g V by g ur and supplying the additional factor

K2 in the incegrand. In any case, there results

" ! g(apo B)2

"Vs! rs(- CC)=
'1+3 cs

II
d2 e e h ý,~s Wa K)e + P-K) e (222)

7he corresponding temporal spect-r? are:
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2 2

i a B )2 -~2y i-P Cos (W-0)2

iP 9
!+- 0,,.o )>' ,,-e•<•'' ;

-d oe dw e & (,1 a(,) 006!LW) I
e(1+3 M•kco(-) 

gi0
(223) f

and

4~(0,Wy)
%)2 U12 2;r

_ _ __(GOO B)2  e (2214)

g(l+ 3 Cos? $D) 0

Thus, the dependence on frequency of the gradiant spectra is

exactly the same as that of the electric field component spectra,
Eq. (217). For the Pierson-Neumann spectrum Eq. (2214) reads.

(E2 B2 -:2 1T/24V
mm (GU B 2"= -2,y _-2ew U 0•

(P (0,W.y)=ii T p f dw ~(W. ) C0.
W• •.(I + 3 cos2 OD)

0 ,(225)

The spectrum attains its maximum value at1-1
+ . (226)

For = max y which is about 20 percent higher than the
spectral maximum of the ocean surface displacement.

We now compute the r.m.s. horizontal-vertical gradient,

defined as in Eq. (186). We have

Sc <, = J 1..2WY +-

ji ) ((u 119
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After substituting from Eq. (225), the integration over w iscarried out with the aid of the following formulae:
i -r/• 2 - o+ -. ii''

w/2

afii [c co2+&1.Dcs
dur COS--Wdw

f C(1+2W cos2  + )~n +4D O2W:ý

2 0

One then obtains

G2 (hT) (Y)rMS

4 (1 + 3 cos7 f

(227)

For y 0 0 we use the integration formula following Eq. (220).After substituting numerical factors in Eq. (227), the r.m.s.
gradient at the ocean surface becomesL

G(h(0) COS92 ODs ~(1 + 2 cos~w ) + 4 sir2 ' P/2S= " " •" •(l+3cos 2 %) -" 'p/
B• 

(228)£. For , D 0, w° 0 and U = 10 rn/sec one finds G~s) 53.7 T .

-i•
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VII. MAGNETIC FIELD SPECTkA OBSERVED FROM
MOVING MEASUREMENT PLATFORMS

4' ODen ocean measurements of magnetic field and gradient

spectra must invariably contend with platform motion relative

to the geostationary coordinate system. Consequently, the ideal

spectra discussed in the preceding section would, in general,
not be directly observable. Platform motion may, of course,

also be introduced deliberately to increase the area of ocean
S•"surface traversed per unit time, as, e.g., in magnetic anomaly

detection from an aircraft. For purposes of analysis, it is

convenient to distinguish between the steady or systematic mo-
. tion, and fluctuations in time of the mean position of the meas-

-~ urement Diatforln, which fluctuations are. attributable to imper-
fect platform stability. While of great practical importance,
questions ,f stability cannot sensibly be addressed without re-

course to data relating to specific platforms. We shall, there-
" - •fore, restrict the subsequent discussion to surface-wave-induced

and Internal-wave-induced magnetic field spectra as they are
modified by the introduction of a steady compcnent of platform

motion.

A. SURFACE-WAVE-INDUCED MAGNETIC FIELD AND GRADIENT SPECTRA
OBSERVED FROM A MOVING PLATFORM

We assum-e a uniform velocity V parallel to the ocean sur-

I i;-face. The velocity v.ector V is oriented along the unit vector

Sin Fig. 3; the angle a is now a measure of the relative ori-
entation of the direction of platform motion and a vertical

Ij plane-parallel to the geomagnetic field. The induced magnetic
field is again resolved along the coordinate axes l
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*1 component I is resolved along the "track," while £ corresponds-

to the "cross-track" component.

For collocated sensors the correlation function between

I components vp measured in the moviig platform coordinates can
be obtaineO from (202) by a replacement of the transverse

coordinate p in the integrand by K.V T. The elements of the
i •temporal spectral matrix are found by taking the Fourier trans-

form with respect to T:

.(opiiBp) 2

~(V)( )jj ?4)1, (wv:) =

,P ,+3COS 20

ff d2K e K- w,a) {i,(K)6 [fZCK)-K.V-•] +4(-K) 6[9(K) + K.V -] . (229)

We shall express the variables of integration in polar form and
$ carry out the integration first with respect to Y. Contributions

from the two delta functions are obtained if

Sm+ K .V - fR(K = 0 (230a)

-+ X v+ n(K) = 0 (2301bD

I Since fl(K) = + 4.g , the two preceding equations are equivalent

-i • tto

-I _ I (W + v;) 2 = Kg, (231)

_ - where

v = Vcos (C-W) , (232)

Is the projection of the platform velocity vector on K (see

Fig. 11).
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They may be expressed in the following form

2\

X1 ,2  f 1 ,2 (6) -(233)
9A

where the new roots f5,f 2 satisfy

i.

622 + (26-101f. 2 + I = 0 (234)

and the dimensionless variable 6 is

~ -~ (235)

The two solutions of (231) are

f(a= 1-26 + ,2-( -6 (236)

2 62

62•, (26-)f,+I=0 , (237)

2 262f()=1-26 - /1•4 (237)
'J ~26
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Evidently,

S < - -, (2 38 )

since only real roots are of interest. A plot of f- and f2 is

shown in Fig. 12.
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SFor small 6 one finds the followi-ng limiting forms:
2 f-

I (239)f

I The corresponding propagation constants are

.-- JK_. . K2 (2•40)
- v2  V2 cos 2 (a-w) g

These limiting forms are valid for zero platform velocity; K2 is

seen to approach the surface wave propagation constant corres-

pondIng to a stationary platform, while K1 tends to infinity-

The contribution from the latter tends to zero since the

integrand decays with increasing wave numbe's.

We now consider the individual contributions from each of

the two delta functions (229). Since 9 = V > 0, there will be

contrIbutions from (230a. only if tne radian frequency w falls

within the range

--- •w + vK >0 (2-4I)

or, equivalently, if

W(l + 6 f,2) > 0 (242)

-Fron (236) and (2'-3 we have

1 + 6 f 26( 6 23

and

2 26(2i)

125

It-



Within the range cos(a-w) > 0, w and 6 have the same sign.

Hence

I + 6f > O; > 0

I + f< 0;• 0

On the other hand,

1 + af2 > 0

for all w. It then follows that for cos(a-w) > 0, (242) is

satisfied for positive frequencies by fl and f 2 " and fcr nega-

tive frecuencies only by f". When cos (a-w))< 0, then

I +! aflI > 0; <0 ,

1 + 61L. < C; W > 0

while I + 6f 2 > 0 for positive and negative w. Consequently,
for w > 0 a contribution arises only from f2, while for w < 0,
(242) has no solutions. These observations may be sumarized

as follo-,as=

Wc>0 U<0

Sc-.s(-w) > 0 f __2 fl

c a-w) < 0 f 2  NORE

Contributions fro- the second delta function, corresponding to
Eq. (230b), are obtained if

W(l + 6fl, 2 ) <0
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One then finds that the (. and cos(a w) regions bear the fol-

Slawn.' relation to f 2 :'

WI<O

Cos(c,-W) > 0 fONE 2

cos(cz-w) < 0 f1  r1 "r2

With the aid of the preceding results -e can integrate Eq. (229)

with respect to K. Since cos(ta - w) = 0 defines the boundary in

the wave number direction space on either side of which a dlf-

ferent combination of the roots fI and f 2 contributes, it is

convenient to change the integration variable from w to 8 =

w - Q. After some algebraic manipulations one finds, for

,• - u> 0.I

CV) _ (ouo B )2
CV (wmv) OPw

2I (l + 3 Cos2

2E-K T 2 2y f+12f -]
j do1= 126 ffj--l)t L I 1

2J

where

Ii

0 TW ; , 15V(~6

I -

e i



The •-uantities f,, f2, are fl-nCtions of 0 and w, and are given
_1L w V cos 6by Eq. (236) and Eq. (237) with 6 - V The first in-

tegral comprLses the two contributlons f! and f 2 from the first
delta function in Eq. (229); in the second integral, contribu-

"tion f2 arises from the first delta function, while contribution
f I arises from the second delta function. The-latter is
asseciated with the "inverted" spectrum 0(-K), and the time

domain dependence exp - il(K)-r. Thus, had we omitted this
mi- term in our oriinal representation, I.e., used only the

"complex exponential representation for the correlation function

of the form #(K) exp ifl(K)r, we would have obtained an incorrect

result.

TIp the limiting case of zero platform velocity we findfrom
Eq. (239) ,that f_ - - while f 2 -' 1. If the wave number spectrum

-k(K) In Eq. (2145) decays with K, then only the terms Involving
J% .2 give nonzero contributions. The two-integrands in Ea. (245)

then become identical. Since em 0 as V 0, one can write Eq.
- (245) as a sirs1e integral between limits of -x and s. The

whole expression then reduces to the spectrum in the stationary
frame of reference, given in Ea. (204).

The expression for the gradient spectra follows from Eq.
(2145) th•ough a replacement ofof h e by 2gp;rs and multiplicaton

of each tern of the series by K

,v " (uo B )2

S%." • (1e + 3 C Os 2 OD )2I . ° -2y1

-m ~x12 2

d j V;rse L 1 -

S112

2~ fL e g
+ + dO G i~s(4s~

x12 -x A.1 (2117)
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The interpretation of the various contributing terms in Eqs.
(247) and (245) is facilitated if we assume a unidirectional

form of the surface wave spectrum. For definiteness, assume

that the dependence of O(K) on K is identical to that in the

Pierson-Neumann spectrum, viz.,

9(K)OM e(OW exp{-2&fU6w -w

The additional factor of v/2 has been included to ensure the

same normalizaticn over the complete range of w as implied by

the cos 2 (w - W ) directional dependence. We then find that the
0

magnetic field component spectrum in Eq. (245) becomes

; 26-)-y(cJL= B ,)2

S16 U + 3 cos2 1)

k-D -* 2y + 2)2r *1Y

lIcoM -11 2 a~jl~

12- 11

2 -2

elp - 2v~.v _ f,

li 2,6/-,-lif 2•
- 1 (2118)

|0
ei- - 2I2f 2a- rq

where U(x) is the unit step function, and 6 and the f are to
be evaluated at the same value of w (viz., w0 or w0 - w) as the

corresponding projection factor gU(w). The proper combination

of contributinr terms in the spectrum evidently depends on the

relative orientation of the platform velocity and the direction
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of propagation of the surface wave. Thus, if 1w - .al is greater *.t

than 900, only the first term in Eq. (248) contributes. Within

the two forward quadrants, 1wo - ! < v/2, there are two contri-

buting terms, the first of which vanishes for V cos(w - a) > g/4f.,

i.e., when the projection of the platform velocity vector on the

surface wave propagation vector is greater Zhan one half the

group velocity of the surface wave (recall that vg = dw/dK =

g/20i. The last term describes a pure motion-induced effect,
in that it tends to zero as V - 0. This follows from the fact

that as V - 0, fl ÷ "" When the platform trajectory is ortho-

gonal to the surface wave motion, I.e., w - a = -+ /2, then

f I " while f 2 - 1. Thus, only the two terms comprising f 2 = 1

contribute, and the spectr-um is the same as obtains in a sta-

tionary reference frame.

'When the surface wave spectrum is not purely unidirectional,
Eqs. (21.5) and (247) have to be evaluated numerically. A limited

number of such calculations has been carried out for the Pierson-

Neumann spectrum with a cos 2 (w - w ) directional dependence. The

results are shown in Figs. 13 and 14 for platform motions of 100

-m/sec (typical aircraft speels). Figure 13 shows spectra of the

horizontal magnetic field component (measured along the track)

for three values of wind speed. Figure 13a gives the spectra at

50m and Fig. 1ib at 100m above the ocean surface. In all cases
"a = 0 (aircraft flying in the plane containing the geomagnetic

field, see Fig. 3), *D = 0 (equatorial zone), and w = 0 (wind
0

direction along the track). Figure 14 shows the results for the

HV gradient, i.e., 122- Aan D = 0,a= 0, and wo = 0. If

j we take the sensitivity of an "average" superconducting gradio-

meter at .l(pT/m)2/Hz,then a magnetic field gradient inWuced by
10 m/sec wind waves is barely detectable at 5Cm above the ocean

surface, and not detectable at 100 m.I
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B. INERA %,~w 
lmm

* B. INTERNAL-WAVE-INDUCED MAGNETIC FIELD SPECTRA OBSERVEDFROM A MOVING PLATFORM

While the formal procedure for finding spectra of internal-
wave-inducecj magnetic fields and grad-Ients as modified by plat-

, i form motion is the same as Just described for surface .naves,
- the details are somewhat different. Thus, one can nc longer

obtain an explicit solution for the roots of the augmented dis-
persion relations. Moreover, a summation is required over an
infinite number of modes.

We shall- not start with the general relations Eqs. (151)
and (180), but with the special form Eq. (157) together with[ ,_ the corresponding expression for gradients. We then have the

following representation for the component spectra:

(VI -2Ky

SK)PI°(K 
I (K2w)6(j'•f° -4 ?- (240"

-! n

It will be convenient to change the variable integration from
'1 i w to E = w - a + r. Equation (249) may then be recast to read

i2°" • d()(W2 ) ,da~) 2

l+ 3cos;¢D -A

I~iLK) r ftrnK C.Ka06L+1ftos6-w] + j(.Kcx80)6[fl-KVcos8+wt(,J
Ii n

n _(250)

ii:. Iwhere
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=iPKaS g,,',a+8-lr,CL)I(K,1x+8) + c-01rz)(,-).(251b)

" -- -~ m -vi -

Equation (250) is of the same general form as Eq. (E-138) in

W Appendix E. Consequently, the result of integrating Eq. (250)

with respect to K can be obtained directly from the expressions

for the towed spectrum of the vertical velocity of internal

waves, as given by Eqs. (E-154) and (E-155). Referring to

Eq. (E-154), and replacing J(K,a+w,8) and J(K,c,8) with

FV (K,a,S) and n v(K,ca,), respectively, and finally multi-

plyirg the resulting express 4 -cns by the constart factor in

front of Eq. (250), yields

(aj B
M ii(V) 0p
(ii " -- = l+3cos 2O

(31 (3)

W/r -2mc n( (3) 2 . PC) (3) 6-2ic y l
_ nn n + -" n ,aB)Ln• n ;n n n n

2- (3) (3)2 -f n (Kc )+VcosB][sc [Vcos O-V (Kc [Kr
0nn 91 n n

(251)

which is valid for w > NMax (Nmax the maximum Vdis:l. frequency).

For w• < %ax we employ Eq. (E-155) to obtain

4(V) (w =

VIA 1+3COS2(ý

(mc,),Vcv~l..c _(3) 2o(3
(3)

-N/(L 23 (3) (3) _2).
E,(icn a c,~ )hm eg2Kr_ )'P e L n K )Q (

ddnnB n n (2n2)

"n( n" "1 •[ [ )+vcOS][IC n MOS19 vc 1 •

S" s(n)

NM
2 n• W M _ N

K i n-nBIý %%K
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The four classes of roots , ) entering into
n enrgn

these expressions are defined in Eqs. (E-151), (E-152), and

(E-153), and a graphical construction to estimate their loca-
tion •In t~ie wK space is shown in Fig. E-3.

An exact numerical evaluation of Eq. (251) and Eq. (252)
would be rather difficult. Fortunately, for the case of great-l

est interest, viz., for platform velocities much larger than the

maxinum internal wave group speed and w > Nmax, the spectrum carn

be approximated by a fairly simple asymptotic expression. This

asymptotic approximation is discussed in Appendix E. Based on

the same justification as presented in the discussion following

Eq. (E-155), the asymptotic form of Eq. (251) becomes

0 (V) _,, (°Wo B )2
1 + 3 c-s2

VT/2 -y

dOETias (K~,a.-O) e I?(K) 12"(K) (253)0 K n

/

where

K = w(VcosB)-'

The closed form of the last sum is given in Eq. (160), or, in

th- case of a deep ocean, by Eq. (161). Substituting the latter
in Eq. (253) yields

7 *)

(V) (CLii - B0 ?
VU (wOy)- O DI (1 + 3 cos2  )

-v/2 e2 0
-f dOj (Kca, ) + nl (K,a,B) K e'fyz(y') e (254)

*10 --

Suppose we now assume an isotropic excitation function of the

form I(K) = CK-p . Then Eq. (254) becomes
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,$)o> - (<,. B u -P+1- -2 2KY(Wy)- d f d j(-,6 K e ,.02. +3 cos 2 O)W fY )"

* where 55)

(. g:(z+0-i,,) + (256(-)-.) .

The expressions for the spectra of magnetic field gradients are
obtained from the component spectra by the replacement of the
projection factors g9V by 2 g.j;rs and multiplication of the in-

tegrands by the square of the wave number. Thus. the general
expressions for gradient spectra (V ("-,y) follow from Eq.

vli;rs " -
(251) and (252) by deleting the factors [K ]2, [K •) [K(

n nappearing in the denominators, and replacing Cv1" n by 2EVV;rS

and 2nvu;rs' respectively. The latter are defined by

S| A) gvr(-,-z+ ) =i(Y-.a-?) + P;rs(m-B-,,m) I(K,m-a-.) , (257a)

5 i.;rs (K,*,1) = gvP;rs(a+$'-8.) -I"JKI+j) + g;rS (M-0"-,U) I(K'ML-) " (25T")

- In particular, the asymptotic form of the magnetic field gradient

spectrum is

- S) ~ (o0i B 12

2/ (2Y) + - -

lf d + - K3 e.y'A(y!)e dy'. (258)
0 -

In the special case of an isotropic internal wave excitation func-
tion with power law dependence on wave number, this reduces to

I 3



C(rop T) /2 -~P4+3 2Ky 0  2
vp0s""') 0 - Jdo ~JKWj.rs(tX') K e fY92 (y') e dyt,

(Ili . ... 0 n ,,(259)
*be•

g ~p;) (a+--.,Q) + g (,--•,c) (260)

Since typically the horizontal group relocity of internal waves

is on the crder of only a fraction of a meter/sec, the asymptotic

expressions for the spectra, Eqs. (254) (255) '2531 and (259),

are valid at 2"afrly moderate platform velocities. It is Important
to note, however, that these expressions cease to be valid in

the frequency range w < Nmax, even for fast platform velocities.

Equations (255) ar-I (259) were evaluated for an exlonen-

tially stratified ocean with the same parameters as employed in

Cha'oter VI. The results are plotted in Figs. 15 and 16. Figures

15a,b,,c show the spectra of the horizontal component of the mag-
n'etic field along the track of the platform motion. For compari-

son, the sperc-tra of the surface-wave-indueed horizontal magnetic

field component along the track are included. In all cases

0, a - 0. The Internal-wave-Induced magnetic field compo-
nent spectra were computed for the two extreme values of p.

Figures 16a,b show plots of the hmorizontal-vertical gradi-

ent spsetrum, again for a = 0, *D - 0. If we take the gradiow-

eter sensitivity equal to .l(pT) 2 /P-2 z, then at a height of 50m,
detectable internal wave levels appear to be attained only at

frequencies below about .05 Hz.
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APPENDIX A

SMALL-AMPLITUDE OCEAN SURFACE WAVES

Here we present a concise account of the theory of small-
amplitude surface waves that is relevant to the computation of
induced magnetLc fields. For a more detailed treatment the
reader could refer to [11] and [12].

Quite generaily, the vertical displacement n(pt) of the
ocean surface may be represented by the Fourier integral

_kt f f e -iT- F(k,4,t) d2~ (A-

In the coordinate system adapted herein, y is the local vertical,
the mean vertical displacement of the ocean surface is coincident
with the xz plane, and y > 0 defines the region above the ocean.
The function F(k,,t), Just as ,i(p,t), provides a kinematic
description of the ocean surface. When the surface displacement
is modeled as a spatially homogeneous stochastic process with
zero m.an, there can be no correlation between F(kAt) and
i(kkt) unless kj = k. Formally*, this fact may be expressed
as follows:

< (FH.iti) F .t 2 )> = S (t÷.t.t 2 ) 6(1_ - (A-2)

These results can, of course, also be phrased rigorously inii terms of the Stieltjes-Lebesque integral (see, e.g., '13]).
0 Here we avoid such matbhematical refinements.
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With the correlation function of the displacement denoted by

R one hasE .nr

R Rr(p_,-p2,tl't) =n~ 'r•it) rn(TPt2> ,(A-3)

Thus, (A-2) in conjunction with (A-1) yields

R (p,t.,t) eI e S(k~tlt2) d 2 k PAnn - 2 MI

The quantity Sn(_T,tl,t 2 ) is "he spatial cross-spectrum of the

water displacement. In general, it will be a function of the

time reference points It and t 2 . If we also suppose that the

stochastic process n(p,t) is stationary in time, then S is a

function of tl-t 2 = r. We then have

(R JJ S% T) d2kT (A-5)

The spatial cross-spectrum S(k T,r) has several symmetry prop-

erties. Thus, from the definition (A-3), we have

R•Ti (-p,-T) = R nno,T) . (A-6)

By virtue of (A-5), Snn(kT,T) must possess the same symmetry

4 Iproperty in kT,T, viz.,

1 sn(kTT ) = snn(-kT,-T) . (.-7)

In particular, S Q(kT0) = S (-_,0). Also, since R(7(p,) is

real, (A-5) requires that

S3,.i(kT.T) =S*,-•t ( A-8

I I •
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Clearly, (A-7) and (A-8) together imply

Ti T~,IT) . (A-9)

Thus, S (0,T) and S (TIT1 ,0) are real functions. The latter

will be referred to as the spatial spectrum. When integrated

over the wave number space kT, it gives the mean of the squared

deviation of the ocean surface at any point p:

l 2 (p_,t) R = B (0,0) =IS (kO) d2k . (A-10)
fin J T --I

It may also be shown [13] that S (kT,0) > 0. Another quan-

tity of interest is the temporal cross-spectrum 0 (p,o),

defined by

By repeating the reasoning leading to (A-8) and (A-9) one

finds that T,(p_,w) obeys the symmetry relations

; n )= " (A-12)

0ll!'O _ I(T,w) (A-13)

In prtiula, 0 (P,0) and 0 (0,w) are real functions and
0 (O.•) > 0. The latter quantity will be referred to as the

temporal spectrum of n(p.,t). Its integral over frequency yields
the statistical mean of the squared displacement n(p,t), viz.,

:!
~T~g~,t),)w) dra 0 -14)
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Thus, for a stationary and spatially homogeneous stochastic

process, the mean of the squared displacement <n 2 > may be com-

puted either from a knowledge of the spatial or the temporal

-ýpectrum, i.e., via formula (A-10) or (A-14).

The preceding relations are purely kinematic in that they

deal only with the description of the ocean surface displace-

i ment per se, without an explicit reference to the velocity

fields associated with such a displacement. Usually, it is the

surf3ce displacement alone that is subject to direct measure-

ments. Thus, an empirically determined surface wave spectrum

4 (0,w) may- be engendered by linear or nonlinear (large ampli-

tude) surface wave ve]ocity fields. From the point of view of

an oceanographer gathering empirical data on surface wave

statistics, the precise dynamical description of the velocity
fields below the ocean surface may be of secondary interest.
However, for the purpose -of computing spectra of magnetic

fields generated by ocean currents the accuracy of the adopted

dynamical model is substantially more important, since the
induced magnetic field is proportional to a volume integral

over the velocity field. Because no generally agreed upon

• I theory describing nonlinear surface wave phenomena appears
available, we are forced to rely on the usual crude linear

model, which, strictly speaking, holds only for surface dis-
4{ placements that are infinitely small. Thus, even though we

shall express the spectrum of the velocity potential giving

rise to surface waves, and the resulting magnetic field
spectrae in terms of an "arbitrary" (pw) the correctness

j of the results can certainly be no better than the accuracy of
the underlying lihear dynamical model. In other words, use of

-' more refined models for the temporal (or spatial) spectrum of

surface wave displacement in the formulas for magnetic field
spectra will not necessarily improve their accuracy.

It is generally assumed that the velocity field giving

rise to surface waves is irrotational, so that ""
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which, together with the incompressibility condition, gives

S|, V2# = 0-
One fundamental approximation underlying linear theory is that

the ocean surface is nearly flat. For a deep ocean one must

have 4 - 0 as y - - •, so that the solution of the Laplace

equation is

#(P.Ylt f ff elcy eik F~,
*,yt)Jeq ;e p__ F(--kTt) d2 -kT (A-15)

where -=<y• <_

If the surface displacement is sufficiently small, F(k ,t) in

(A-15) may be related to F(kT,t) in (A-l). Thus, for small

displacements

and with the aid of (A-l) and (A-15) one obtains

i7 F(k,t) = kTF(kT,t) (A-16)

where the dot denotes the partial derivative with respect to

time. Inserting this in (A-15) yields

(,y,t) =_ (,t) d2  (A-1)
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Finally, with the aid of the linearized momentum equation at

the air-water interface one can obtain a differential equation

for F. Thus, under the assumption of constant pressure and

that capillary* waves may be neglected, one has

+g = 0 at y0

or, equivalently,

12#-• + g9 0
ot2 at

After substituting (Anl7) and (A-1) in the last relation, we ob-

tain

T(r,,t) + kTg(j,t) = 0 . (A-18)

Aside from a constant (independent of time), which we set equal

to zero, the general solution of (A-18) is

iit -ist
F( = A(kT) e + A-(kT) e Y (A-19)F(T,t) A(

where 2 is the dispersion relation for deep water surface waves,

R= + i , (A-20)

and A+ (kT), A-(k) are the two constants of integration. In

terms of these two constants the displacement and the velocity

potential are

The wavelengths of capillary waves are too short
to be of interest herein.
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,=11,t e e e-

(,yt) e). e e A-) A0 , e k (A-2 1 )

Taking the gradient of (A-22) gives t he velocity field r_,t):

(( -e, t) T e rea fntof.k,t) ink (A-23)

where

- 2i

Y ((I ,t1 ) F Or~T ( )>ý-Q

+W hol no+.iiket eate the~ sa ist 4.icsvrtgso+(%~ ~(~.) T ) e A(A kT) (kj) i + 14 kT) (A-24)

the spectrad amplitudes A s Ad to the spectra o, r and S in

(A-11) and (A-5). The correlation function of (_a,t) in (A-19n
S• in time-wave number space is

•-•1 •" I<F(_'tl) F (_*,t2)"

<1 e%) A*+€) > e+ <A-€IT) K"-)>
_jlII .- tI - i2't 2 M ittI + M't 2 (A-25).•-,+ |<A-; A > e + <ewA+ ( -) >- e)

" ~In order that this expression reduce to the form

•1 S~~nnTMStl-t2) 8(_-• ,as requi-red by a spatially homogeneous
•iand stationary process, it is necessary that the following

re]ations hold:
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+ =½ [ + (A-26)

0_1 A (I#)> = O-r•)

<A7(k) ,1€%)> = 4.+(-k ,P4b

<A(A.Q) A >~j (A'7() *4q+ >= (A-26c)

where V, a+ond are two as yet unspecified functions of IT.
With t1I - t 2 =-,(A-2 6) inserted in (A-25) yields S (JcT,. -r)

onsequentwhile the explicit form of the spatial cross-spectrum

in terms of Vhe and 0a becomes

The functions oa aust be compatible with

(A-8) and (A-9). The first of these rmquires that,

=

=1*(II " (=+) = ••

++

while according to (A-9) + and 4p- must be Dure-ly real functions.

15

Consequently, 4 k..)= (-_k,) and the spatial cross-spec:,rum
may be written in terms of the single real positive function

( e
2,,

15
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.* T We now obtain the relationship between V(kT) and the temporal .

cross-spectrum. Taking the Fourier transform of (A-29) with

respect to T yields

o_3u = d _T 6(iw4g) ÷ @(AT) Gw~)IdZ&. (A-30)

It will be convenient to introduce polar coordinates kx = k cosw,

kz = kT sinw, x = p cosO, y = psinO, and employ the notation

*(kT) = *(kT,w)

*( -_T) = (kT,w ÷v)

Recalling that in the dispersion relationship kT has bCen de-

fined only for positive 2, viz., S2 = & > 0, we have, for w > 0,

ý?,EU1r _-i--p COS (W-e) 42
g2, d= e 9 2,w (A-31)

/0I -I

For w < 0 only the second delta function in (A-30) contributes,

and is to be evaluated at w - . One then obtains

2
-i-Lp cos(w-e)

_ 6 (A-32)

Assu-ming that • is defined for all 0 < w < 2 i as a single

valued function, i.e., ,0 = -3L21r) , the periodicity
of cos(w-e) in w permits the replacement of the limits of in-

tegration by / , where 6 is any real quantity. Consequently,
changing w + x to W in (A-32), one obtains

i!E pos(w-e)4.2
dw e "e_ p' Ca < 0 (A-33)

I g
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Comparing (A-31) with (A-33) one observes that the symmetry

conditions stipulated by (A-12) and (A-13) are indeed satisfied-

"Setting p = 0 in (A-31) and (A-33) we find the spectral density:

0(0'w ,w)iw (A-.3l)
"0

In -ost discussions of ocean -surface wave spectra only the

positive frequencies are mentio-ied explicitly. As long as the

observation platform is stationaary with respect to the wave mo-

tion, the negative frequency region may be ignored. However,

when the observation platform is moving, the spectrum measured

with respect to the platform will underg-a a Dcppler-lke trans-

lation and distortion involving positive and negative frequency

constitaents of 4b(O;w). This is discussed in Chapter VII, and

in Appendix E in connection with towed internal wave spectra.

An analytical form of the sea surface displacement spectru=
that has received some experimental conflrmatlon is the Pierson-

Neumann spectrum. (Kinsman [11], pp. 386.) In tems cqf the ampli-

5tude function A2 employed by Kinsman, p. 399, Eq. 8.1:15, the
functional form of this spectrum is

a;- 6 C-x e -2 {-2gi-i-I cos2 (W-. ); So < - < w_-w <
A2 (,,W) .=

10 ; othmrdse . (-35)

where U is the wind speed, wo the wind direction. We have
£0

replaced a and 8, used by Kinsman, with 2 and w-w 0 , respectively.

The constant C has the numerical value (Kinsman., u. 390)I
C = 3.05 mesed- (A-36)
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The quantity wI is the low-frequency cutoff which is determined

by the fetch and wind dupaticn. When w 0 the sea is said to

be fully aroused. Data doi .etermining wI for a given wind

speed fetch and duration say O found in Kinsman, 96. Next

we should like tc? relate 2i *•j.. of Kinsman to wew .

In our notation, Eq. 8.3:6 on P. 380 of Kinsman for the correla-

tion of the oc--an surface dispiacement reads

R M(o0 A-(ww) dw Cos or . (A-37)

On the other hand [see (A-11)],

4.. -

R (0,T) =1-
TM '9 4PO~w)e dira

5 -~Substituting from (A-34) one obtains

2v

0-r- =fjTd g O a-,

0
2w -

~co w- f i,

if -3 9 d7 ost
I 01 0

Si Comparing the last expression with (A-37) one has

A2(W,,w) = T - ,w .

RcferrJmg to (A-35), the explicit expression for 0 is

g~ ~~p ~.2 ii r~s2 w..~ij); ,s<~ <

0 otherwise
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SThe most. uncertain feature~ in the Paerson-Neumann spectrum is

i wave number directionality. The available data appear so crude

i ~as to be compatible with a variety of functional forms. (Ki~ns-

I • °I

,I

I! I

-4I

I IiI

•~ii

_i i- - ,I
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- APPENDIX B

EVALUATION OF CERTAIN CONVOLUTION TYPE INTEGRALS

INVOLVING THE FREE SPACE GREEN'S FUNCTION

FI
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APPENDIX B

EVALUATION OF CERTAIN CONVOLUTION TYPE INTEGRALS
INVOLVING THE FREE SPACE GREEN'S FUNCTION

Combi-ning (48) and (47) we have

f z"(XYZ), B0 o dy'• dx'Jdz' _ (xy. z;xl-y',z,) w,(x'..y.z)•

where

Kz (x:Y'z;x'"y',z')

- 1

( dz" [(xX,) 2 + (z-z") 2 + y 2 ] - G(x",Oz";x',y',z)
2 . -_z-M

t • I:(B-2)

J and GN is defined in (26).

/ We shall employ the Fourier integral representation of the

•-_ free space Green's function GO

!0
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G (x~y~z;x'.y',z') (X-X I~- 2 + (y-y 1)2+ 2~
4z-'s 2  

-- r-r'f

(2w )2 -2c,(B3

(B-3

where

T + B4

We then have

2z2

- (~u2 + - Cei.xx)-czz) -~y
-~2) 

2kz)
2 + 2

* T

Also (see (7)
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2 ' - k-

(2v 2-i

(B-6)

After (B-5) and (B-6)-are substituted in (B-2) the inte-

gration over x" and z" yields a product of delta functions wiith

the result,

K (x,y.Z;X',ytzt)
z

1 ]d~dr]fdE'dz'

-iFtx + (-X -c +i" i '_-ky -jt'IY
e 1~X 1~Z + 1e eT'' T (E-.''(ir

Integrat'ing with respect to r', ' yields

I Jd~dr, e-iE(x-x) -iC(z-z') (-iC)e_-kT(IyI+Iy'I)

(2v)' k
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Since y' is always non-positive, for y > 0

iyj+Jy'i = Y-Y' = Iy-y'i

On the other hand, for y < 0 ,

lyIjy' I = -y-y' = -(Y+y = Iy+y

Hence,

-CO

f dz~~y dCx y, Ex-' z,)zz (B7

T

* Let

* • =kE k-.e
4I

k sin V

" "�- X-X' = Ip--p' Cos e

Z-z? = IP-' sin e

SThen (B-7) becomes
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SI ~ Kz (x,y,z;x' ,y' ,z')

C~ 2w

- ~ ~ ~ ~ ~ ~ ~ ~ ~ k (2) '~rd i irP cos (w9O). B0 ekTY+Y'i dw sin w e--(2 )2f dk e B8
S~0 +

We now focus on the inner integral

2w

I •f dw sin w e-ikTI p--' cos(w-e)

I-e

4 dw sin (5; + e) eTi121P ' I cos w (B-9)

where we have first changed the variable of integration to
w' = w w - and then used the observation that the inte-
gral of a continuous periodic function taken over a full
Period is independent of the location of the integration

interval. Some furtber rewriting of the last expression

In (B-9) gives

1165
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2:2:

fi ( e i w + -eA ) )i k TI P- pPi otw eo s

21 0

21 dw eikI-P'Io l

2:d i'k~lp--P'I cos wie(w -:2

F ~21 di e

+ 1 f dwi eikT -P -O fieh

-2w

_,- e 1 , i/ 2 2: eikTIR-P'l cos w ei(w v/:2)

21 f

e e' i/2 2 dw e-krIR7p'pt os w e1(w v/2)
21J

=-i. sin ef dii eikTI~ ICos w e i(w w/:2)

0

=-2v1 sine J)l1(kTlk7P.-Di

jL66



where in the last step we have employed the definition of the
Dessel function of .order 1. We now substitute this result in-
to (B-8) to obtain

z(X',YZ;x',y',z') - -sin2 e dkT e -k T -')- (B- O)

From a well-known formula*

e-lx Jn(Bx) dx = 8 -n[ 4 2 + 82 -cj

With n = 1, x = JY•y'j" 8 = f---P'I "

sine _0 p-p,[2 + (y-y,)2 _lyyy, 1)
_Kz(xgysz;x',y',z') = - -- --

2ur •i p--'J 4Ip_-_'I + (yTy >12

We now express sine in terms defined following (B-7), and

41 write t1he final result

*I. S. Gradsteyn and I. M. Ryzhik, "Table of Integrals,-1 Series and Products", Academic Press, London (1965) p.707 formula 6.611.

lI
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(Zz .z)4p.p12 + (jy.y' 2 
-IyiTy, I)

2w Ia•'2I 4 12.-_p'•t 1 (2 + 3y'Y , (B-l)

where yTy' pertains to y " 0 and y < 0 , respectively.

In a similar fashion, we evaluate K, in (57). Substitu-

tion of (48) in (56) yields

S•¢•,~xy~z;x',y',2)

2wf dx" dz" - [(x-x") 2 + (z-z") 2 +.y2 ] GN(x. O,z,;xty~,z,).S2w ay

(B-12)

- Since only the case y > 0 is of interest, we obtain, with the

aid of (B-3),

1 • [(xx") 2 + (zz.) 2 + y2

211 ay

l =- 2f dgdC e-iE(x-x") -ic(z-z") e-k$E (B-13)

m it 168
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~Mr

Also, by omitting the factor (-!i') irn (-6) one 0s

- ] d;t' e-- -i (z- e- " I. (B-14)

Substitution of (B-34) and (B-13) in (B-12) again permits the

resulting delta function (2r) 2 6((--V) g(•-•') to be integrated

out, so that by analogy with the previous case, one obtains

.'..A (x,y,=-,x' ,y•' ,z') - _;. d~d• eig(x-x') -. i(z-zZt ) e- .'y'_

3y, 2( Ed );2e-e

(B-15)

where we have set y + iYI = Y - y' since y' < 0 while y > 0

Changing to polar coordinates (via the relations foilcwing
'B-7), (B-15) become-

j2:K.{x~~z= -f',zk=. --(Y) dw ei IPo-D'los(w-8)

.(2• •"0

169
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The inner integral is obviously independent of 8 and, in fact,

defines 21 J o(k, -p'1). Consequently,

(ryz-v'y' - ifdkT e-kT(jY-') 3 (klp----P. ) "(-16)

0

Us~n-g the same 'ormala as in the evaluation of (B-1O) we

find

SKy(xyz;x',y',z') - 1 [(x,)2 (y_7, I - (z-z')Z , (B-I)
y2

as was to be demoanst-rated.
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APPENDIX C

S•!' ~F ORMIULATI"ON FOR ELECTROSTATI[C AND MIAGNETOS'iATIC FIELDS

IN TERMS OF THE LORENITZ POTENTIAL
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APPENDIX C

FORMULATION FOR ELECTROSTATIC AND NAGNETOSTATIC FIELDS
IN TERNS OF THE LORENTZ POTENTIAL

Here we present the derivation of the expressions for the

matrix elements given in Eq. (70).

VxE 0 (C-1)

; y>0 (C-2a)

o +aV x B,0 y < 0 "C-2b)

Io H- = Vx A E=-V#

-0 ; y > 0
VxVxA-=

: -1-1oOV# + Voa(V x B~o

V x r A_= VV-A -- V2A

10 ; y > 0 (C-3a)
Let V-A =1

-POO# y < .0 (C-3b)

Then E 0y 0 (C- 14a)

.-- V ;y > 0, (C-4b)
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while

V2 A= A -pa(Vx ) ; y< 0 (C-5)

10; y >0

Boundary conditions on A Since H is finaite at y = 0

V x A= H implies continuity of A ,Az. Also V-A is

finite. Therefore Ay must be continuous at y = 0 . Moreover
from (C-2), (sihce the right side is finite) HX, Hz are con-:

tinuous. However,

I(

3Az 3A

0oH x - y
;y Zz

• y

ay
° and we have just concluded that A y is continous at y=0

From this follows that all derivatives taken along the place
DAU x

y = 0 must be continuous at y = 0-in partieular -- and

are then continuous. Continuity of H and H thien implies
3A Az 3AI

- continuity of *-#and -"•-" In addition, we must have from (C-2),

Wi-7
E +•;y+• - 0: at y 0-

17L T



(continuity of total current across the Interface) or employing

(C-'la)

ay-V- V"A_+ op (V__x _) =O0at y =0.

(C-6)

On the other hand, from (C-5)

V Y 0 a-0' x BO y<0

Consequently, the fluld velocity dependent term in (C-E) may

C be eliminated to oblahLn

S(V - A)- V2 A 0 at y O ,

Zy

or, equivalently,

Al 2 3 A x aAz
. 3x' a+ -- - at-

Equation (C-9) together with

C
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A xl

UJ!y=

(C-10)

-i• ! AT. AT.

II÷ ay ay

0I =- y, 0. -1y= 0- _ o+

(C-1l)

Ay1 I - (C-12)

"• I l• ly 0+ a y•l |•y=o- y.=o+o-y

represents all the boundary conditions needed to solve (C-5).

For convcnience, let

ca V(x,y,z) x B J(S)(x,y,z) , (C-13)

a-. wri-te out the three eomponents of the vector equation

(C-5) as follows:

V2 Az J (C-l.a)

TV2 A - (C--14b)A= 
- 0j" X(

yv 4c

176
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It would appear that continuity of the fanctions Az, Ax and

their normal derivatives as specified in (C-10) and (C-Il) is

sufficient to uniquely determine Az and A via (C-1 4 a) andz x
(C-14b), since the problem thus posed is identical to that for

a current distribution x S)+ z JLSin free space (i.e.,

in the absence of boundaries). While undoubtedly this would

be the solution to (C-!4), it would not necessarily be the

correct solution for the vector potential of the magnetostatic

problem which requires that (C-9) also be satisfied.

The vector preblem requires zhe simultaneous solution of

(C-14) with the boundary conditions (C-9) through (C-12). This

problem is best handled by considering one component of _ at

a time- Denote by Ai = x,y,z x,yz) the i-th compo-

nent of the vector potential due to the j-th component of

) source current Js. Thus, for J ) we have

S= (c-15a)
A zz 0 z

V2A = 0 (C- 15b)

xz

From (C- through (C- 12) we observe that A is superfluous,
so that we can set

A = 0, (C-16)
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and we have to deal with only two components Azz , Ayz with

the boundary conditions

A~~ -= Az If--')7a)I

Iy +y=- 0y

S8Az = Azz (c-!7b)

zzi zayy +0- B
"Azj = AY (C-!7c)

y +

2Az + a2 z 32Azz
-- yz = -,at y= . (C-17d)

Bx2  •z 2  ;y3z

The solution for Azz is

0

ATZ(.Y, = iof dyffd2k? G0(r.Tr') Js(r') (c-i8)

Iz

3 where the free space Green's function obviously satisfies the
same boundary conditions as Azz; A must also be linearly re-

Slated to p P) and we can always write

178
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Ayz(X,y,z) = p dy' d2 g:Gy,(r,r') s) (r')

(C-Ig)

where G _s an unknown function to be determined from the
yz

boundary conditions at y = . Since G satisfies the homo-

geneous Laplace equation (just as does Ay), we can always
yz

write it in the form

Gy (r,r') - dkT e gk•- = -(kT'Y£Y') (C-20)
(21)

where of course y' <0 , and

S{ e- ekry- k' ; , > 0 (C-21a)

S•.I`ek-y T ; y < 0) (C-21b)

2k?

This form ensures that g,&, (and hence Gy) is continuous at
yz

y = 0 and twice differentiable with respect to y for all v 0 0.
(G satisfies the homogeneous Laplace equation.) The single

unkmown coefficient T(%) Is found by writing Go(r,r') in the

Fourier domain and employing (C-17d). Thus, with

(= -ikz•-P' -kzl-

0o(rr') - 1 d2k e e

14 2kT

179

Illl__ _I__I__ _ _-__ _ _ . . .



S2

one finds

eGr

•, --ikz-ik (C-22)

Hence i

G -rr)z _, 'd) AdT e e

(21)2 2k?

(C-23)

"where the minus and plus sigr, refers to y > 0 arid y < 0,

r espect ly.

-7iis integral has been evaluated in Appendix B, Eq. (B-il):

SI 2 - + (yvy) 2 -jy:y'I)

• Gyz (-rlr 4-v pw12,1p..!D--2 + (y.v,) 2

4 (C-2 4
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Next, we i.L~t J. ( O) jX and solve

VA =x ,- (C-26a)

V2A 0 (C-26b)

with

A =0. (C-260 )

Proceeding as before,

A~ X(xJyiz) =1 dyIJ ~ G rr) '(r" (C-21)

0-

whereI

,(r~rl) d ET2 R ei'kT (k- i;) JkTe Y4Y'I
I(2w) If 2eT

~Jc (C-29)
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which integrates out to

1 (x-x,) ( (f-p,)2 + (yTy,) 2 - Iy Ty'I)

yX 4v _, - •- I-'• -_'l 2  (yFy,) 2

(C-30)

Finally, we turn to the third com.onent 3s) We have

v 2A Js) (C-3'.!)
'YY o Y•~II

Obviously the B.C. in (C-10) - (C-12) are met with

A =Azy =0 , (C-32)

and

92A

Moreo•ver, since A Is required to be continuous at y = 0

we conlude that A = constant a, y = 0 , wihich we can al-

- ways set equal zero. Since V2 A = 0 for y > 0 , we have th3

-. -result that-

A > (C-33)
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On the other hand, for y < O,I

"A 1xo")= ' y~fJ a G (r,r') Is) (r') , (C-34)

yy ~ zi' -C yyy

where

Gyy (rr') = G (x,y,z;x',y',z') - G (x,y,z;x',-y',z'),(C-35)

-•

L. ! hich is the Green's function for the Dfrichlet problem. In

Fourier transform space one has

I V-G~~t' (2)2 k,. e j e -e4 !'2w - 24;

- I (C-3 6)

Collecting the preceding results we have

SII

I - (X.y,--) =Po dy' d G p" (r_,1__ S) )Q!.' (C-37a1

2 1.83

Sx= oo - - ) S _( -



-O ------ __ __ -,V-~

.0r
II0Jdy' d 'ffdp? G (r,'I) (r') + G (r,r') ]s)(r-

A y(x,y z) = ;LY > 0

"o dy' dfd2 ptG (rrt)i s) (r') + G.(r,r')

+ G (r,r') r)< 0

(C-37c)

From (C-37) one notes that whereas the components of the
vector potential tangential to the interface are giver. in terms
of the free space Green's function G this is not the case for
the vertical component. Since any deviation from the "Biot-

Savart" type integral applied to j;s) must be due to additional
conduction current generated by the induced electric field
(i.e., within the conducting fluid), such electric fields evi-

ji dently influence only the value of the y-component of the
vector potential).*

The components of the vector potential A uniquely determine
both the magnettoztatic and electrostatic fields below and abovethe surface. Below the surface the electrostatic potential is

given by

0 - - A (C-38)

Note that if one employs the total current to find A, i.e.,
oE + o(V x B_), then A =A, + A A = 0 fff J( W

G o .(r,) 1 y [A y -y (ror') d3rY-,
with Ay given by Eq. (C-37c), AE1 being the vector potential
contributed by the electric field Induced current GE.
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Continuity of * at y 0 may now be employed to obtain

BBy
•i ,*I (x,y,z) =- f p' d2.__- G0 (x,y,z;x',O,Z')o Vt " A

(C-39)

where VI denotes differentiation with respect to x',z',y' (at

y= 0). One can demonstrate that (C-38) and (C-39) lead to

the same results as in Eqs. (29) and (30).

I~I,
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APPENDIX D

-iFORMULATION FOR INDUCED ELECTRIC AND NAGNETIC -
FIELDS TAKING ACCOUNT OF DISPLACENENT CJRRENT

AND MAGNETIC INDUCTION ABOVE THE OCEAN SURFACE
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II

"APPENDIX D

FORMULATION FOR INDUCED ELECTRIC AND MAGNETIC
FIELDS TAKING ACCOUNT OF DISPLACEMENT CURRENT
AND MAGNETIC INDUCTION ABOVE THE OCEAN SURFACE

In Chapter III it was shown on the basis of simple argu-

ments -hat for time scales on the order of seconds oz- longer
and length scales much less than i0 3 -T meters the electromaig-
netic- fields induced bl, ocean currents are governed by the
equations of electrostatics and magnetostatcs. In the follow-
Ing, we shall set up the problem, exactly, i.e., we shall include

magnetic icducUton effects and the displacement current above
the ocean surface. There are at least two reasons for present-

Ing the more detailed analysis. The first is to show rigorou-ly
that the exact solutions for the fields reduce to the quasi-
stat"i results under the assumptions staiea in Chapter iii. The
second is to obtain a consistent physical picture of electromag-

netic energy transfer above the ocean surface. Below the ocean

SIsurface we still neglect the displacement current and the
convective transport of charge pV, both of which, being propor-

tional to ° o 0 xi , are entirely negligible by comparison
with aE at frequencies-iHz or less. Thus, as the startIng

point we take Eqs. (73a) and (73b) with pV + c C = 0 for

Sy < 0. Unlike in the analysis presented in Chapters II and III,,. we shall deal directly with the electromagnetic fields, without

Introducing any potential fuinctions. At the outset we take the

I Fourier transforms of E,H, and V with respect to time, viz.,
i-

] eE(rt)=f , de , (D--la)

2v f

p=- 4| - ____
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H(r-t- = [ et H !Q ) dw, (D-lb)

"2w ri. 6) d (D-lc)

'The electromagnetic field equations for TM, assume the form

V x E =rw) -iWiH(rw) _ (D-2a)

li:;; E(r,w); yO
S(r,M) = (D-2b)

o E6(r,w) + V(r,w) x B a; y<O.

Since the boundary separating the two media is the xg
plane, it is naturl to attempt to solve (D-2) in terms of
bidi ensional Fourier transforms with respect to the spatial

variables x,:. Using the notation

xx + ZZ=
-0 -0

1( x Cartesian unit vectors) and d_- dxdz-0

and, similarly for transform variables

Sokx -+okz kr, d2_kT, - dkxdkz.

one can represent E(ru), r_(_,a) by

e 4-P E 1 k9 ,y;)d kT
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•J I I

! ! - (r) jH(k V--- I1- (D-3b)

e-1'-_,(k ,y;u)d2k (D ,

)T T(

It will be convenient to define

ii -- ~~, ;u = -_•y;)wo
T E ! Iy• _ _O (D-4lb)

and a similar dfinition for Hf. With this notation, substitution
of (D-3) Into (D-2) yields

-ik + 4
-. •Vl T E(D-5a)

-•k,'x - + V _x I. ur'+; y>O ',,D-5b)

S-• andI-.an - x _ + V x _E = -iu•!,( a

T 0 -o i (D-6b)

"Eqs. (D-5) and ([-6) can be solved for E and R after recast-
ing them in R form In which the transverse and longitudinal
field components are separated. Thus, define

C T 20 Y0 (D-7a)
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IF = HI + YH± (D-7b)

where Y is the unit vector in the y direction while E ,
T

IF are fields transverse to v , i.e.,
T

"x ÷+Z Ez • (D-8a)

- OX- 4-

- 0 H~ -0 +

Since E-, I- oepend only on y, I and w, but not on
x,z, one can write T

Va x E (C-9a)

(LIFO -T

T k n acHun (Do9b)

Alsos

kx E k E + k xy E7 (D-10a)

k x q. k x H + k y I(Dli T - T T ~Y

Taking account of (D-9) and (D-10) and forming -the scalar'4 vector product of each member of (D-5) and (D-6) with vo yields
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I
";f=-'--o E "" ' -T (P-lla)

I]

0 T

E Vt

I;- ')Iim-o-
:o 1i --_T) •(D-12a)

T o

1-j- 1E (HxY \-y EB (D-12a)

Eqs. (11) and (12) express the longitudinal field components

E; 9- explicitly in terms of the transverse components
I ~yy

, f-F. The transverse components in turn can be found from-T -T

the solution of two ord-inary differential equations iL y. To
see this, form a vector cross product of each member oi (D 5)
and (D-6) with Yo. Thus, since by virtue of (D-10),

Y. xt x E+) Y, ~x .~~E =! x (D-13a)
N J1 T E T Ey* )

(L e)= Yxkjxyvff=k jEfi (D-13b)

-f and by virtue of (D-9.

* x- E.. ---i-t- (D-1-1a)

) +
V x• • o "V xT (D-lzib)
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Eqs. (D-5) and (D-6) may be written in the following form:

+ a +-ik E -IU 1 0  x (D-15a)

-k/+ -T
-ik T Y a!,T x E( (D-15b)

BE
I--

TT

-ik y - a a o x _+ ao • (Ix x - (D-16b)

-Th"e differential equations for and H_ are obtained by
+ +M

substituting for E, Hf from (D-I1) and (D-12). This yields
y .

Aa-~ + k k1
T , ,TT (f 4 xyL (D-17a)

N~~ --k,/
... [. -- (T- +

-Y 1 2x (D-17b)
:= J X - a

I ic I|aE-
i'ot• 7 (D-1.8a)

-11 [] 2+ 7!Tr0 (' xEx + o.jy x _Tx E\(D-,.1b)

i•!!•where I = 4oo+eyoI the unit transverse dyadie.

MiPi C -
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These vector equations can be reduced to scalar equations

by employing the basis vectors e and e x Y to write the solu-

tions of (D-17) and (D-18) as

- ( (D-19a)

17 k y=) (yo x e) + 2 (kT, y )e ,(D-19b)

S~with 
k_ (e e g =l

,T

Substituting 
(D-19) Into (D-17) yields

-- 0)
• - and

tI
-- T'•2

biun ( ino (x--O e e))3y
I(1 + ) -)7 e

r 2) TLT +

IC 11'2

a = t •0 (ox e) +e ( - _1

ii oo
ie) (v ic ý (20b)

00

C 
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Since the vectors e and e x are linearly independent,

the scalar multiplicative coefficients appearing on both

sides of (D-20) pay be equated to obtain

3V+3. +
-_,- IZ 1 III , (D-21a)

SalI

-=|-•-•x- = icYiVI , (D-21b)

+

+

-- •- -- iicY2 V2  ,(D-2by 1 y1

1

2 K (D-23a)~~ic V:Z_ (D-23b)
2 2E

K ko -2 k2 (D2a

Eqs. (D-21) and (D-22) determine the expansion coefficients

in (D-19) for y > 0. To obtain similar equations for y < 0 one
must first express the inhomogeneous terms (driving functions)

-~kT -(xMB o) and a Yo x (T x DO) in terms of the basis

vectors e and e x Yo. Thus, one has

-_.i-_x Bo = .-ikT -(y.y-• x (D-24)
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and

u4x (Ix - [y,4x(. x -Be]e

- "
+0 (T x ,) {ex zi x x _

e_ + n(e x (D-25)

where
a! _( e B B-)T] (D-26a)

- (T -ee Bo�y- --0e)Ty]

.= a T.(e x Y1) B - -[B(e x Y (D-26b)

"Substituting (D-24),and (D-26) :in (D-18) and employing (D-19),

yields

-iay / •
l ii "o.I 1- -- 32
il+ (ei _. IId By

+ *WU (exe) I -:

0 1 -2
0.,Ve) + e )+ ýIe2ye7•! 7

iwj j.ýe 1+ V; +o n (I.x)27b)

*.i I Again, by equating the coefficients of e and etxy, one finds

197



LI

dV-1 () (ic + •)I - IkT 0 (To) ,(D-28a)

-- dI a -i,., (D 28•
dyO•. dl

Say - oV•- ,s(y) , (2b

- dV imp (D-29a)

dy L

d _

- -- (°+ "Co V+ •y) (D-29b)

To put these equations int-o the same form as (D-21) and (D-22),

let 2

Sl~Iwo + :"" = iK-Zl
0 0

C 'IJ /Z 1 or Z

-' The propagation constant - is then found from
2 -

or = -i i=2oa + (D-30)

12

and + =_ (D-31)
Z, y

S~Similarly,
rz - 3. (D-32)

2 
y 2
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The desired form of (D-28) and (D-29) Is then

dV-
dy.-- 1 + (D-330

'• dV;

dI•
-- dy 1V (D-33b)

iv K -- 21- (D-:34a)

dI 2 _JYV_ + 9(y) ,(- 1 b

where
f(y) = -ikTo .*(T x B-o) (D-35)

Equations (D-21), (D-22), (D-33), and (D-34) represent

set of "transmission line" equations with sources r(y), n(y),

t(y) located in the region y < 0. Their solution is best ob-

tained by first solving the corresponding Green's function

problems. There are three "canonical" problems that must be

considered. They are:

Canonical Problem 1. (E-mode cUrrent excited by a
unit voltage source).

= 1 ZG + 6yy

-Y: d0~ (D-36)

jdV
I icZ-G1dy 1

-?Y2 I (D-37)
dG I
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Here 6(y-y') Is the Dirac delta function in which y'<O, and

G =G,(y,y') is the desired Green's function. It must satisfy

the outgoing wave condition for y>O, be continuous (together

with its derivative) at y=O, and satisfy appropriate boundary

conditionz at the ocean bottom. Data on the constitutive

electromagnetic parameters of the ocean floor do not appear

to be readily available. Hopefully, the final results for
2

the induced maeetic fields will nnt turn out to be overly

sensitive to the electrical properties of the material below

the oce-an floor, especially for deep oceans. In order to retain

some generality in the subsequent analytical results, the

boundary conditions at y=-D (ocean bottom) will be stated in

terms of the E and H code reflection coeffiecients Y I.ad Y2.

respectively. These are readily expressed in terms of the

K constitutive parameters of t-he electromagnetic medium filling

the space y<-D. If, for example, this medium is assumed to ex-

-end to y=-- with a conductIvity OD, relative ele2trical permit-

K tivity ErD and permeability Uo, then

r o0rD-iD l

and

"42 = , -(D-39)

D

Iz

I

1
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where

2 ___ 2 (D-'40)

koj rD0 j

Canonical Problem I can also be phrased in terms of a

single second order differential equation. Thus, differen-

tiation or the second equation in (D-3 6 ) and (D-37), and sub-

stittialon of - dV yields

d G - '2 VI=l-1aYY)•<0 (D-41)

dv2

d 2 G.

- 9 -o (D-42)d2 G • 2 GI >

dy 2
1

The solution of (D-41) for y>O Is

G I(y'y T(y,)e-i1C (D-43)

where T(y') is to be determined from the solution of (D-41),

which may be written in the following form

s 1 Cy,Y,) = A f(Y<) (,Y>) (D-44)

The symbol y< denotes the smaller of y or y' while y> stands

for the greater of y or y'- The functions f(Y) and f (y) are

two linearly independent solutions of the hom-ogeneouz fQrm Of

(D-4l): T(y) satisfies the boundary condition for y<y' (i.e.,

a- j=-D) while f(y) satisfies the boundary condition for
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y'y' (i.e., at y=O). One finds that

f(Y) e- r'(O)ey (-45)

Sr(o) = . (D-46)

Similarly,

-iJ-(y+D)_ isc y-!D)
f (Y) e -le (D-4I-7)

The constant A in (D-44) is determined by first Integrating

both sides of (D- 117)- with- respect to y between the 11mits
y' ar. y=y'+e = yj and requiring that G1 (y,y')

be continuous at y--y'. This yields

( "y') Y1  (D-418)

where the dot denotes differentiation with respect to the

first of the two variables forming the arguments of G1  Since

G-(yJ.,y') - A f(y')(•.) , (D-I49)

l (y',y') = A f(yl')f(y) * (D-50)

one finds upon setting Y' y' =y" and substituting in (D-'48)
* 1 j that
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A (D-51)

Employing (D-47) and (D-45), a straightforward calculation

yields

A = 2)(D-52)•i~~~~ i liD.• e -D -

Since (D-413) must reduce to (D-44.1) at Y=0 the unknown function

T(y') In (D-43) is given by

"T"yi) = A f(yt) Vto

whence the complete expression for GI(Y,y') in (D-43) becomes

Y ei e--(Y'+D) eioc-(Yt+D)f __ }i

, i(- )=•--- (D-53)

SDe - erY o)e

Also, from (37),

Y- -s e -I-Y+D)_ e-ioc-(Y'+D)[
I1 y1 ee

2Y I iiJD . -ic-D*e -l ~ 1 (0) e-

NI

Canonical Problem 2. (E-mode voltage excited by a unit current

source)
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- -- .J,., 1 + Cy-y') y < o (D-55)dG~

d11 - a (D--56)

d-I

2i 'd y . 1 1  ;>

Y (D-55)+ =Y -1 i + YYy

dG-

d= 2y > 0 (D-56)

dy

rThe solution crn be wif tten at once by comparison with Canoni-
-cal Problem . Thus, comparing (D-1i) with (D-57) one observes

that the solution of (D-57) is again given by (D-53) provided

Y- is replaced by Z and the signs of and -i(0) ae reversed.

I'i Therefore, the solution to Canonical Problem 2 is

2041
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-D iH,(yt-r.D)
"! z-i y']~i-
G1 (y' ���2  e1+r1(0 e- , (D-59)

and
-1 -- i-(y' +D) ie-(y'+D)

Ii(yy') -2z er I (C ei"y (D-60)
1 e c-D_.y-:i'lr(O) e-iK-D J

Finally, for the third cononical problem [corresponding

S mE- to the H-mode voltage in (D-34)] one has to solve the differen-

tial equations

=A-2 + (K G2 -im 2 6(y-y') " 0 (D-61)

dy2  2

2 2 + 2 =0 y > 0 . (D-62)
dy2  >

.it
The solution follows immediately by comparison with (D-59):

_i•-iK-(+D)+ esi(y'+D)
(Y Y 2u+r 1 2 e - (D-63)

2eV-D 2 (ON)e2

Also, the corresponding current is
Z-" -0.e-ig"c(y'+D)+ ei'c-(Y'+D),• _• ••,,)-+e - t e ~

( Y-') 2 - 1l+r 2(O e-ilcy (D-64)
22 iK-D . i-D L

e Y2 r2 (0) e
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where

r (0) z (u~-65)
2 2 z

As a notational. convenience, let

S-iK-i(yt+D) ~iK(Y'+D)

T -0 1D-0+6
e --f 1(~ [riuo 1 Me67

T iJD--.-+D -juc D )

=l T - l~ (D-67)

T -76r (0) e-

Th sluios o h thre conncal pobem my owb

T 2(v 1(y,y') 2= m- r MT-liY - D T) r 2 ( (D-68b)

a~ 23

G 1(y,y') = T ii(y',w,k.T) e- 2 (D-71a)

V (yy' =ZiT l ylwET eil206-9b

ItLlc
11 1___)=TiyW~T -S D7

___ 'CT eJiy D-0b
I~y-t =--- - -4-



- 2 (y,y,) = Y2 T 2 (Y',-) e-cy (D-71b)

These auantities represent the solutions of (D-21) and

(D-22) when the excitations 1;(Y), -n(y) and E(y) in (D-33) and

,D-34) are replaced by delta functions. Consequently, employ-

ing the principle of superposition, the solution of (D-21) and

(D-22) for excitations Z, n, C are given by

0 0

S(y• ) = e -icy r f T ' (y')C(y')dy' - Tvl(Y' )(YI)dY , (D-72a)

%-D -

0 0

+ -ic

-i-

I i l(y) e i~ T li(Y,)c(y,)dy,_yl fTvl(y,)n(y')dy' (D-72b)

V +(Y) =eic3I [.fTv2 (yv)Ey'dy'] ,£ 1 Y (Yd 1 (D-73a),,. ]

I+(y) = e-fy Y2f Tv 2 (Y')E(y, dy, . (D-73b)

-D

The components of E, H follow from (D-19) and (D-11):

I k

+ i+

4k,.

Y 04
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+ c + +

(-YI ) + !!(2y) (D-75a)

q(Y) w he ) (sd

enter into th•ersnain D3.T aetedpnec

=ii , k *t k�k T c )+ _=----kv) T ( y) . (D-75c)

_Equations (D-72) and D-73) when substituted in (D-74) andl •. (D-75) give transformed electromagnetic field quantities that

enter into the representations (D-3). To mI!e the dependence•.•of the excitation coefficients on the fluid velocity explicit,

•I Ione can -write

Ca (k T ) •T B_, y ') 2 (D - 7 6a )

n ( _T ,T,y ') = b (k T ) T _ ( kT ,-,y() ,, (D -7 6b )

(_kT,I,y') - -T {k (D-76c)

• where a_ k mT • o -(~ -• -• ~ D 7 a

4 =.xX 0oy 
(D-77c)

SII

2ciB
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The cartesian components of the auxiliary 'vectors ab and

a - B a Ba -B -

z IT oy x kT1 oy y 0 k

k k ( T
b ~ jB03, b ~ z B ,b -B x

The source terms in (D-76) CTj are now substituted in
(D-72)-and (D-73j) to obtain

0
+ eiKYf

Vi (y) e= dy'[(-ikcTZiTflY z-T ab )T (D-78)
-D Zvi z Z

+ (-i!,TZiTLIicx-Tviabx )Tx

3. -CT Ob y)T y

V(Y) =e-iIC y y EaTv2 azT + uTv2ax'1' + cyrav J T (D-9

(_v) e _tdy'[(-!k~,c z -I-YIV ~bz)

*(-ikcT 1 7Y1 T lab )T + (o.YiTvicb )T , (D-80)

I Y) ed M cz~z + Y v2ax~x (D-81i)

+ Y2Tvaa T
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The spat'al Fourier transforms of the electric and magnetic

fields can now be obtained by substitu'ing; 2D-78-D-81) into

(D-741) and (D-75). The final results are best expressed in

matrix form with

T~iT,w,yI) ITx(kTJ3y') I(D-82)
[T yQI~E

i• " ' +(-•''• =e-iKY• dyt S-(H)[_T,w,yV')T(k,,') (D-83

0

+ QITWsy) =e-i~Yy s(E) (LC.W,ytT~WYw D8

.-:D

The elements of the 3 x 3 matrices S(H) and S(E) are:

(H)O = T + + y 12vl + 2T i/ T k , (D-84a)
-zz Box xTllY+%Y x Y2 Tv2 z 2

Vti -(H)T 2](D-85c)

ki

S (H) =-ozik T + BoY [-Y3.•lzkx kzkx] (D-,b

I| I

t l X-Il 2v
kka kk a

"o z 2 lvl Z2+ [ 
.CT

21 0



s(H)B kT+B EYT, 1 +T (P-85d)

(H) BO kTn +B% rY T k2 +2 a(D-85e)

akzkx

() B EY T- - Y 2 7 2 B 0  [Y T k +YT ý]- (D8f
S:; oziv 1 'ri z2 v2 x 2

BH ,, (D-859h)

r k 1l
BH -+BT v# r-8i

(H

s~ Boz T - +% [1k (-8d

ok k
(E)X %x(iz ITlu)y[-v v2

s~zf
2121-8b

________ B___ _____ 14T]+B k.Tj+ v

zx oz z*O-



# ()2 2 ok kzkx
- - - , -6 )-

S, (E) 2Boz k [-T +IT I-
S. B 2z vi x kJ(D-86f)

(_ ox)[ NCOlj+ I0  S )-1 -TC0 (D-86h)

SB ] +) FlVlI D8i

Y 0r

The matrices S eand SE) are not independent since (D-83) and

(ID-3l) must satisfy the hiomogeneous linear equations (D-5a) and

(D-5b). One finds directly from (D-85) and (D-86) that

"(k -Y - (H) A (E) (D-87a)
"-T

or

0 -ic k Xl
(Hi _ s(E)jJK 0 -kr S - y>O 0 (D-87b)

The temporal Fourier transforms of the f~ields are obtained

by combining (D-83) (D-8'4) with (D-3a) and (D-3b) to obtain

_ i 2  ik~P~( (H)
-e kT e ,,y (D-58)
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-- *G 0

-1_

Finally, the time varying fields E(r9,t), H(Est) are

0SH_(r~t) = d• ~t e-il• --P-• dy' sH(k•~,' T(k.=' "(-I

Alternatively, (D-90) and (D-91) may be written as

Hgrt) =JJ y(_r,t) e- - d2*' (Di-92a)

wif 1-

,Jf4 e () wy]T...y'). (D-93a)
-. )

, = e S-

Comparing the last two expressions with the results obtained

under the quasi-static approximation in Chapter IV, Eq- (96),

one can make the following identification:
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. •: , , , -i• L I .J --••l =

m, -a
7

• % -

-"T (H)(15-94~l: G(-'.;vyY') =O _± Oey'
0 Sto

1 V (D,-95)

i.e-, in the quasi-static approximation, the matrix e ,

is approximated by its value at w One can show that with

w = 0 use of Eq. (D-85) y~elds matrix elements consistent with

Eqs. (98-100) in Chapter IV.

We now apply (D-90) and (D-91) to compute the electromag-

netic fields induced by small amplitude surface waves. For si-

plicity consider a unidirectional surface wave with frequency

312, propagation constant K, and 0, = Kg (deep ocean). In Eo.

(A-22), Appendix A, we set A(f) = A ( - K), A-CkT) = 0,

so that the velocity potential is

.4KY -iKi~p+ int
OPy,t) = UK A e e

17-he temnoral and spatial Fourier transform of the velocity field
II

is
1%~k,yr,w) =2.fAIC'D(Y.K1i-j) eKY5(icTr-.K)6(s-a) (D-96)

With (D-96) substituted into (D-90) and (D-91) the expressions

- for the electromagnetic fields for all y > 0 become

S_-m

E(r,t) = AK-lo e-KoIyl eKY (HI)dy ((D-97)'

_ -- e _ S(K-iK) dy'(. (D-98)
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The Integrals are taken over the semi-infinite y domain, in

consonance with the assumption of a "deep" ocean. These Inte-

grals y!eld spatially independent vectors' that depend on K

(and hence frequency), and the direction and magnitude of the

earth's magnetic field. The induced electromanetic fields

have the same time-harmoric dependence as the hydrodynamic

surface wave, and also exhibit a propagation wave character in

the transverse (x,z) piane. The dependence on y above the

air-water interface of the form exp-icy is actually an

attenuation, since

-K 2  (D-99)l

with c the speed of light i1 vacuo. From the dispersion rela-

tionshi-

- Kjj-;-- l (n-=cK
2 9 g2 N,2. (-10

where V = g/a is the phase velocity of the surface water wave.
p

Since V /c<<' one has -- ±iK so that exp - Icy Z exo ±Ky. On0I
physical grounds, only the negative sign appl~es, and (D-97)

ard (D-98) yield fields that decay exponentially with increas-

ir height above the ocean.

To simplify matters, let the earth's nagnetic field lie

e nti"riely in the icy plane. The geometrical relationship between I
the aurface wave propagation vector K and 5- ,3

-Al

is shown in Figs. 2, 3, Chapter V, page 60 (where the notation _T

Is employed for K). The propagation vector of the surface rave

will be represented in polar f oran K = K cosw, K. K sinw, s0
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that with a = w in Fig. 2 the unit vector £i points in the direc-

tien of propagation of the surface wave.

We consider first the magnetic field and let

(s€) = s k.2,y') (y €K-IK) = iK = "sH(• .- -- z z (D -110 1 )
-K s (H)

F:K] (H)

K s

With the aid of (D-85W one finds

("1 v 2 )] >iK Tv v (D-102a)

S| "• OH) _ox[zKx[TII o YiTvKzY2Tv ) ] Kx2Tv2 oy
•~ o' 2r xx n K z. + i,(DIO

•[ml• (H) 2KK)Ks --B [OT. + 1 (Y TvK2 +Y 2 Tv2 K]iaKYg

.. B •T +_ Y 2BL y B (D-102c)y 052 v2 fl v2 0Ya 0 -

- In an infinitely deep ocean one can set v! and y2 to zero in
(D-66) through (D-68) to obtain

Y __

[Ii - - (0)] ei' ' _ (D-103a)

Ii 2x Y1 Z+
T - 21 [i+fO1 (0)] e ' ei y (D-103b)

S•| YI+YI

•1 1

Z 2 - e ei Ky (D-103c)'14- 2 [l+r (0O2 el~ Y +Y-
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For the electric field one has

(E)poyn (86)

(T -K ) -iK (D-104a)' ii

CE)E)

il I"Ec~ploylng (8)6

(E) -B r~z7L + (T-) X2 + ,/ ]- iu)JKT 2o,(D10aoxSi ~ Kl2 VI IDlOb

-B rV... ) + -&ý7ý2]IK + _ •z

"(E) (D-1050)
0 1lvi

-I

The interpretation of (D-102) and (D-105) is facilitated by re-

solving the components parallel to the xz plane along K and

a direction normal to K. The new vectors labeled £1 (H)
(E) (E) -r

_ are

Ii.
S(EH) =() 4 (H) + (H)

+ - -3 y
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s • EH sin-r cosw 0O (•H

z.

(E,H) (E,H)ll1
CEH) - -sin-w 0 5(,H (D-106)

S1 1  3

L -S(EH) 0 0 1 s(E.H)

With the aid of (D-102) and (D-105) one finds

!H) GYT -B iVKY T, (D-107a)

s(H) = BOvKz:UTI - oYT:vl] , (D-ý-107b)

s() -B K [K + D-1O7c) -

i£ (E) cv -iKT2Boy (D-lOTd)

_3 Box x2'v c ; - Ky

(H

These relations, together with s S(E) in (D-102c) and (D-105c),

Srespectively, permit a decomposition of the ele2trG-agfnetic

fields into two surface wave -,odes: an E-mode having only an

j electric-field in the direction of Dropngat.nn and defined by

the triplet (s$E, sE ( 3) , s J, and an H-mode characterized by

ikavyig only a magnetic field in the direction of propagation,

with the triplet (sH) sE) (H)

53 2-
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From (D-105c), (D-102c) and (D-107) one finds the ratios

I(E),• . ] (E) '
C E ) =C (D-108a)

5 0 (l.f1hiiH) s E) no°

Sii( H) K (D-!08b)

y

wehich are recognized as the E-mode and H-mode characteristic

impedance, respectively. Recalling that V = 2l/K is the phase
p

velocity of the hydrodynamic surface wave, the characteristic

impedances are also given by
-•' z(E)

! 3. - =co- , (D-109a)

p

(.) V
7. =; c-P-(D-109b)

o c

where c = i/. is the speed of light 7acuo, and r , =

377 ohms is the characteristic impedance of a place electromag-

netic wave in free space.

"It zemains now to compute the field amplitudes in (D-97)

and (D-98). The results are

e llx + ' ([l0a

e S.Cvt )dy' a(B oxcosw +iB 2(y)1a

' (Ky'sH)(y,)dy' = -is oinw B ox (D-ll0b)
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-m 0
K (H)J eK s= H (y,)dy' = -io(Bo Cosw + iBoy) 1

(l+rl+) 2 •

0
eKY'sCE)(y')dy' = KBoxsinw , I(D-.Od.)

12 - D-÷ o.
--- " 1+

f eKY's EE)y,)dy' = 1(-) o-(B cosw+iBoy 1(D-2OeOX Oy (1+i'i-q' 2 ,(I-le

, * 0

J eK sE)(y t )dy' =-iKBosinw.1 (9--Ot)

"The dimensionless quantity q appearing in these equations is de-
fined by

C) (0-Ill)

Thus far no approximations have been made, and (D-110) are
"exact" to the extent thac only the displacement current in the
sea water has been neglected. First, one observes that the
quantity

REo
0 4 q (D-112)

appearing in (D-1lOb, d, f) can be set equal to zero since

Co x 10-9, a ii mho/meter and fl91 (for surface waves).
Second, with the aid of the dispersion relationship K = flzg,
(D-111) becomes

q =4.827 x 10-4 2-3
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For surface waves this quantity is usually small by comparison 1
with unity. For example, for 2 = .169 radians/see = .0269 Hz,

(which corresponds to a phase velocity of 36.14 meters/sec) q-t.l.

Assuming qc ci and setting to zero the quantity (D-112), the

e xpressions for the electromagnetic fields take on a part-Icu- I
larly simple form. Using the decomposition into E and H modes

relative to.- the K direction, one finds:

a) E-mcde fields-

E (xy~z~) = 2B snw -Ky-±K* 0-R+iith

H (xsy~z~t) = Ao B01si-B eiý eyý!P' (D-113a)

3 ~ )ox 2~~t,(-1b

E-,(x,y~z2,t) =!AqB simw e -- ,(D-113c)

b) H-mode fields-

A go(B cosw+iB e)D1la

'ý(-~~)ox oy , .2la

E3(x,ys,,t) =-R-o -Ae 24 P (D-1lllb)

H, (x~y, z. t) =A W- (Boxcos-w+iB o eK~~+~ (D-114c)

These are the fields of classic eiectromaagnettc surface wave

=odes. They propagate without attenuation along the surface

of the sea, their phase velocity and p~rppagation direct-icn

being identical with that off the hydrodynam~ic surface wave.

Electromagnetic surface waves are generally slow waves, i.e.

having phase velocities less than zhe speed of light. The

-J present instCance affords an illust-ration of surface waves that

are slow, indeed. It is of interest to observe that the

4 electromagnetic surface waves above t;-he ocean are in fact24 221
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indistinguishable from those that would arise in air above a

dielectric interface for plane waves incident from within a

dielectric half space and totally reflected at the interface.

To obtain phase velocities as low as those of hydrodynamic

surface waves, the refractive index must, of course, be extremely

high. For example, if 6 is the ang'e of incidence within the

dielectric, then the product of sine and She refractive index

must be on the order of i1 , which is probably we-!! outside

the range of dielectric constants attainable with existing

materials. A discussion of the relationship between the fields

in (D-113) and (D-114) and those given by the quasi-static

approximation is presented in Chapter V-D.

II22
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APPENDIX E

SMALL-ANPLITUDE OCEAN INTERNAL WAVES*
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- This appendix provides the background material on
linear internal waves, whieh in cther parts of
this report Is used in the analysis of Induced
magnetic fields.
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I. LINEARIZED EQUATIONS FOR INTERNAL WAVES

IN A PLANE STRATIFIED OCEAN

A. LINEAR INTERNAL WAVES IN THE ABSENCE OF MEAN SHEAR
AND VISCOSITY

We choose a Cartesian coordinate system such that the xz

plane coincides with the ocean surface and take y a 0 above the

I ocean surface. If one neglects Coriolis effects and viscosity,,

1 the hydrodynamic equations are

av.
p- + pV-VV_+ Vp + pg , (E-la)

at-at
S~ap

I V-(pV) = - , (E-lb)
at

together with the incompressibility condition

j V*V = 0 ,(E-1c)

where V, p, p are the fluid velocity, density and pressure,

respectively.

Internal waves are sustained by virtue of small fluctuations

in density which in turn produce fluctuations in the gravitati6nal

forcing term. If we denote the mean density bf p by p, then

p = P + p,

where F' = 0 and the condition that the density fluctuations be

small is then

2 -2
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Similarly, the pressure p is assumed to undergo small

fluctuations about the mean i, so that

P= p' P,

where again p' 0.

In most theoretical work :n internal waves it is assumed

that the principal direct effect of small fluctuations in den-

sity is comprised In the gravitational restoring force. This

fundamental assumption is referred to as the Boussinesq approxi-

mation. it entails the replacement of the density ( appearing

in th. two inertia terms of the mo!. entum Equation by the mean

densil:y 'F, while still retaining the fluctuating density compo-

nent in the gravitational forcing term pgy - Thus, subject to

the Boussinesq approximation, (E-la) is replaced by

+ V v + vp, + : o'gzo + P -o - (E-2)

The ocea-. is assumed horizontally stratified so that the mean
density p is not a f'unction of x and z. If in addition i"be

mean density does not depend on time, the incompressibility

condition (E-.tc together with the equation of eontinuity leads

to the statement

at ydy --

where V is the vertical component of fluid velociVy.
~1 y

As Vhe next simplifying assumption we take the mean of all

the fluid velocity components as zero, viz.,
1 =0o. (E-JI)

The consequences of a nonzero mean velocity will be taken up at

a later point. Upon carrying out a statistical averaging opera-
tion on (E-3) ard taking account of "Z-I) gives
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-V * Vp' =0. E-5)

Similarly, the average of (E-2) yields

pV VV + Vp + p gy= 0 (E-6)

Emplcying this •r (E-2) we have

p_ + _ gY=-:o (V VV- V -V_) (E-7)

Equations (E-7), (E-3), and (E-ic) are the fundamental equations
for a (zero mean) velocity field V induced by small fluctuations
of density p' in a horizontally stratified ocean. The quanti-

ties

E - (T .VV-v -VV) (E-8)

= V - V- vp', (E-9)

appearing on the right of (E-7) and (E-3), rerpectively, are

zero i.ean random functions (see E-5). If the (zero mean) flue-
tuating Velocity field V is sufficiently small, the fluctuations
of a T ,v about their means are of a smaller order. With the
aid of the usual statistical argument one cah then approximate

I v, BS1v by their averages, viz.,

* =0

•~~ a /pv = 0

ý pwv "I

S22?

I. "" 2
- -. t



Once this is done, the result is the set of homogeneous linear
equations in -V, p' and pt that form the basis for the study of
small amplitude internal waves:

+ -= +-- gy = 0 (E-a)

apt + V dp _0 (E-0b)
at y•dy

The functions av and S in (E-7) and (E-3) may be inter-
preted as "source" terms of a linear system of equations. if
the variance of each of these source terms is of a smaller order
than the variance of V, an iteration procedure can be established

* •whereby weakly nonlinear effects may be taken into account. For
example, in the first iteration the source functions would be ex-

-' pressed in terms of the solution of the hcmogeneous linear system
(E-10). In the next step one would solve the Inhomogeneous
linear system (E-7), (E-3) In which the sources would be expressed
in terms of the V and p' determined In the preceding step. In the
following, we shall concern ourselves only with the zeroth order

linear slstem, viz., (E-10).

We now proceed U, transform these equations into the wave
eqlation for linear internal waves. SLnce there exist two
slightly different versions of this wave equation :in the pub-

lished literature, we shall carry out the derivation in detail,
thereby identifying the steps leading to the discrepancy.

Writing out (E-10a) in component form yields

L1 ao' 0 E-ia)
=+ a

'A + 1 BI+ g ElcI at a- ;
P 

I
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After differentiating Eq. (E-1c) with respect to the

horizontal coordinates x,z and Eq. (E-Ila, b) with respect to

7one obtalzs

"aV tap' ÷ I ' - 0 , (E-12a)" • + •z~y -- z

P
y+V a2pt P

atx ax-y -p 0 (E-12b)

atay - a a -= o,-)0

1 31pIII

x + i 3 2 p' +D d I

_ ____ ! 1!!!+III aiI. -I 1 )

WI We now eliminate the cross derivatives of p', and obtain the
following two equations:

+i III I -0(E 1 a

(z azy'dp3d

P BP

Substituting for and -p from (E-11), yields

i I I
3Z! FT

III

Ii ii a-__| 
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a 2vz g ap'L• • • •- - z -F --- - az 0, (-13c)

p dy

at avy g ap, -1d)
it ay -v -d - aT 0

3t~y~i/ dyk/ at

Now use is made of the linearized equa:,tion of continuity, kEq.

"(=-lOb). We first differentiate (E-13c, d) with respect to

time:

S: 0 z wyz _ -- -i\•-. a2p' -0 (E-1•ia)

Siat 2  / Y • at2  3 zat "

.-

a2 (aVxa~ _- 1 - a~' 0  (E-!l•b)

,From Eq. (E-1b)

at2d a p- - a d avt

a2~ ___av

x• Vý E aza dy a4rz!

Paat dy ax'

S•i which when substituted in Eq. E-IA gives the following pafr of

equations:

-ii
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a2  __ _ __3 32  avy

;| I t"\ y z W2 g Z Nt 2 0 , E•-15a)

at 2  7-x .g at 2  ax (•-15b)

where N is the Brunt-VIis5l9 frequency given by

S• . S2 (E-1 6)

As the final step, differentiate Eq. (E-15a) and (E-.5b) with

respect to z, x, respectively, Adding the resulting equations

we obtain

a2
- ~ V (*Tv Vv) 117TV] 2V~vy 0O

where

Since by virtue oft Eq. (E-le) T V - Y , the preceding is

J equivalent to

1 ~av 1
E.2~ i 2 V - U-~ + N2V2VY =0,(-

which is the wave equation for the vertical velocity of small

amplitude internal waves. The other two velocity components may
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be obtained from V with the aid of Eqs. (E-lla) and (E-llb) to-
y

gether with the condition of incompressibility. One finds

3z 3x
m+ -57_- 3z-'f (E-19)

the first of which is obtained from Eqs. (E-lla) and (E-llb)
by differentiating with respect to x and z and el'mirnating

Equation (E-18) states that the vertical vorticity compo-

nent is not an explicit function of time. This component may,

therefore, be set equal to zero, since it can have no effect on

the time-dependent internal wave motion, A nonzero vertical

vorticity component can, however, be Induced by viscous forces

and by the effects of the earth's rotation, In the 1tte- case

the right side of Eq. (E-18) must be replaced by 2f j y, where
f ls the inertial frequency [14 -, The wave equation (E-17)

must then be modified by appending on the right the term
4,

f"2

The entire range of significant internal wave phenomena is en-

compassed within the (radian) frequency band f < w < Nmax.

Typical values ofmax are .5 x 10-2 rad/sec. The value of f

varies from 1.1 x .0-4 rad/sec- 1 at the poles to zero at the

equator. We shall be interested only In frequencies substan-

tially above the inertial frequency so that for our purposes
f =0.

232
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The fundamental wave equation (E-17) differs from that

given by Phillips [12) in that his result does not Include the

term --- . This term is retained by Roberts [14) and Krauss

(15). 3quatior. (E-17) appears to have been first obtained In

this form by Love [16). Comparing our derivation 'ith that of

Phillips, one finds that Phillips sets • = = constant in the

two momentum equations for the horizontal ve.Locity components,
i.e., our Eqs. (E-lla) and (E-l1b). This eliminates the term

M al( multiplying the pressure gradients in Eqs. (E-12c) and

PE-I)., which term then does not appear in Eqs. (13) and (1i).

We then obtain the wave equation

I2 Vv] + =22 0 ,(E-20)3t2IVYTy

which is ?i.illip's result. It is valid under the proviso that

NV2 >> J (E-21)
g ay

SThe significance of this restriction is best examined in

terms of the eigenvalue problem for the internal wave modes.

We therefore first-obtain a representation of the solution to

Eq. (E-17) in terms of eigenfunctions in the y domain. The

most direct approach is first to express V (x,z,y,t) as a bi-

dimensional Fourier transform with respect to the transverse

coordinates x,z (in the sequel collectively designated by the

vector p:). Thus,

•ID

V(pyt) (K,y,t) d 2 K. (E-22)
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Substituting this in Eq. (E-1l7) one finds that V (Ky,t) may
be represented by

11N

V (Ky,t) = exp N (n) dn

0f

An ( e (K) en(y) (E-23)

provided the 0 (y) are chosen as solutions of the eigenvalue.

equation

-- n(Y) + [-Y + K2 1) on(Y) = 0 .(E-2 1 1)
dy 2  n ~

The eigenvalues % (K) are angular frequencies that determine
the dispersion relation for each component internal wave. The

A (K) and An(K) are the two arbitrary constants associated withn
the second-order initial value problem in the time domain. If
the boundary conditions at the endpoints y = 0 and y = -D are

of the form

By + o (E-25)

with a any real constant, then the boundary value problem in the
y domain is hermitian, and the eigenfunctions #n (y) form a com-

plete orthonorma3. set [17) (excepting, of course, some patho-

logical N(y) profiles, devoid of physical meaning). Reference
[17) provides an extensive compendium of solved one-dimensional

eigenvalue problems as well as techniques for determining

SelgernunctLons from the associated characteristic Green's func-
tion. For internal wave modes one usually assumes that the

7 - 234
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vertical velocity at the surface and ocean bottom vanishes, so

that a - 0. Since in a deep ocean the Vaiis•fl frequency de-

creases monotonically at large depths, a mathematically con-

venient boundary condition is lim 4 n(y) - 0 as y - - -. An ex-

ample Is afforded by a %•ts&i7 frequency profile that decreases

exponentially with depth. Another possible boundary condition at

y = 0 Is the free surface condition for small vertical displace-

ments of the ocean, surface. This boundary condition is of the

homogenecus fort, (E-24) wherein a i 0. One finds that in this

case Eq. (E-24) yields one solution that is independent of N,

and which solution corresponds to small amplitude surface -4aves.

Although the set of eigenfunctions for the stated boundary

conditiont is complete, it will not necessarily be purely dis-

crete. In case of a continuous epectrum, the s-m In Eq. (E-23)

must be replaced by an integral over a continuous parameter.

Whether the spectrum is purely discrete or partly discrete and

. partly continuous depends on the combination of boundary condi-

tIons and the functional form of N(y). Analytical techniques-

for determining the spectral decomposition are presented in [17)

and [18). Generally, for profiles that are chosen to model in-

ternal wave phenomena in the ocean, purely discrete spectra are

-obtained.

We now return to the question posed earlier with regard to

the quantitative significance of the differences between Eq.

(E-17) and Eq. (E-20). Based on (E-20),
+i (K) e ign(K)t n en(K)t ]

V (K,y,t) A, + A (K) e1% (E-26)

"and the eigenvalue equation simplifies to

d y• nY) " K I n(y) = 0 . (E-27)
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-. V - n E.~-~ (-17) ist n-

Thus, one consequence of retaining N 2  in Eq. (E-17) is to in-
Y

troduce the multiplier exp • (N 2 (n) dn. Since N - 5 x 10-3
2g I max

0
it is clear that for all practical purposes this factor is equal

t*o unity. However, the modification introduced in the eigenvalue

problem could be significant, since the rmodified* profile in Eq.

(E-24) contains a derivative of the VIisXl frequency. Clearly,

when the profile varies rapidly with y, Eq. (E-24) instead of Eq.

(E-27) should be employed. Actual ocean thermocline profiles are

"not expected-to exhibit sufficiently abrupt spatial variations so

as to give rise to significant differences between the eigenfunc-

tions in Eq. (E-24) and Eq, (E-27). Care must be exercised, how-

ever, when profiles with abrupt changes are enployed as mathe-

matical models. A case in point is the constant multiple laye.

profile. Eigenfunction solutions in this case can, of course3

also be obtained by a direct solution of the Laplace's equation

in each layer and the application of boundary conditions at the

interfaces, v~z., without resorting to the formulation of the

eigenvalue problem for the general spatially dependent profile.
If, however, the latter formulation is used, then the correct
equation is Eq. (E-24) and not Eq. (_-27).I

Another instance illustrating t:,e difference in the solu-

tions of (E-2 4 ) and (E-27) arlses when at the upper boundary the

eigenfunctions are required to satisfy the linearized free sur-

face boundary ccndition. One then finds that one of the solu-
tions of (E-24) is a surface wave which, however, is not con-

tained in the solutions of (E-27).

We shall only be concerned with VMis~ll frequency profiles

that are slowly varying and employ Eq. (E-26) and Eq. (E-27) in

.4 the subsequent theoretical discussion.

The two harizontal-velocity components may be found with the

aid of Eq. (E-18) and Eq. (L-19). Employing the Fourier trans-

form representation with respect to the transverse coordilnates

23



V x•' /ft e-i'- Vxz (K~y,t) dK_:,

itin conjun.ction with (E-22) in (E-18) and (E-19) yields

i W Kt -1Q(K)tl

V" (€•y,tjl "-n(Y) (nK~e h + An-Q()e ( ,•E-28)

x r2'

rr

-where in(y) - n(0). Another quniyof interest i h

Svertical displacement of wat-er particles defined by

a t -E"30

• • With
p,y,t) e-i-P(_yt)d-

n~I coento wih(-2'n (E-31nd)E1) ied

• •. ione finds from (E-26)

V ( n(y) -A+(K)e e+~'t A(K)en

""V (K,y,t) - K• -Ke9

T (E-32)

.•_ nn2ý37
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B. EQUATIONS FOR LINEAR INTERNAL WAVES WITH VISCOSITY
EFFECTS INCLUDED

We now examine the form assumed by the linear Internal wave

equation Zor the vertical velocity when viscosity Is taken into

account. Instead of (E-la), one must start with the Navier-

n - Stokes momentum equation-3|
p- + P V -V + Vp + Pgo i V V . (E-33)

If we again assume that the mean fluid velocity is zero (viz.,

Eq. E-4), the small perturaation argument employed in the In-

viscid case remains unaltered. Instead of (E-10a) the linear-

ized momentum equation reads

+i" -L + - -° (E-34)

with E-10b and E-lc remaining, of course, unaltered. As a nota-

tional convenience, let

F =- V'V _ 2 V2. (E-35)
F p

We will take v as a constant (for water at 680,v • 10-6 m2 /sec.

After differentiating E-34 as in E-12 and making the substitu-

tions for p' yields the generalization of (E-13):

-ij ar a ~ IW F 3

( z 'VY1- z gaBPI - d
_y d I=_1 d F z -y (-6

22

4 238



I, I

By following the saxz steps as in (E-14)-(E-I7) we obtain

(E-38)

The left side is, of course, precisely the same as (E-17). We

shall now cast the left side into a simpler form. Employing
(E-35) and assuming v a constant, one can readily show that -he
last ter.m in (E-38) equals -vV2 V2 a-•- also V 2 = Vy

aoVT 5yvV
The final result, therefore, becomes

+N K-v a y2 __X v~v 3 k 0. (E-39)
7 ~2  T y ~J Ty -~ V y yFatE -

The other two velocity components follow from the condition of
Incompressibility and the two horizontal momentum equations:

av aVx _ (Vy
aT + -1 '5 , O(E-40a)

S- _
( av 3V ,72 rV air (g-40b)

av az vZ 5'
3V W11,

Note that 1 - is the vertical component of vorticity. In
az axj the inviscid case, this component tras found to be identically

I izero. This is no longer true when viscous effects are included.*

$ If we now assume a solution of the form

2 i I Vy(_,y) = ff.(y)A(K)e-iK- -+ i(K)td 2 K

Equation 40b will be recognized as the linearized version of
the transpcrt equation for the vertical vorticity component.

2
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then the one-dimenriona equation for ro reads

2vKe )d26 !L# + (K2)d ]K2

Il d

(E-I41)

"This fourth-order equation is of the Orr-Sommerfeld type [19

a mThe theory underlying its solution is substantially more

compDlicated than the theory underlying the second order Storm-

Lienviile equation obtained in the inviscid case. Althaongh the

Orr-So~merfeld equation is extensively discussed in the mathe-

.matical literature, its application to the study of internal

*m waves in the ocean appears not to have received much attention.

It is important to note that even though the viscosity coeffi-
-6 2cient v is exceedingly small (V - 10 m /sec), the solution of

Eq. (E-41) can in general. not be obtained by simply setting

v = 0 since thereby the order of the differential equation is

reduced from "chc fourth to the second. To obtain solutions

for small v, one must resort to the techniques of singular

perturbations [19]. We shall not attempt to carry out the

rather intricate mathematical development at this time. How-
ever, on the basis of available theory [19] one can state that
the effects of viscosity will be strongest in the "regions of
higý. wave numbers, particularly in the vicinity of turning

pcints of the differential equation. In addition, the whole

I question of mode ccmpleteness which is so straightierward in
the inviscid case, presents several delicate and as yet unre-

solved mathematical problems.

C. EX-CiTATION OF LINEAR INTERNAL WAVES

In (a) we Jerived the homogeneous equatlcn governing the-
propagatlon of linear internal waves. The energy sources of

Such internal waves have not been included. A technique that is
sometimes employed is to assume a source function on the right

Is • of Eq. (E-17). For several reasons this is not a physically

1-~ 2410
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I
satisfactory procedure. First, the source must be postulated so

that the underlying assumptions that had been made In lineariz-

ing the wave equation are not violated. Second, since in the
derivation of the wave equation the mean velocity field was

taken as zero, only sources which yield zero mean velocity
fields are permissible. It is difficult to determine a priori

what constraints must be imposed on the source tern to satisfj

these two conditions. To account for internal wave scurces and

at the same time retain a consistent framework of a linear

theory, one can consider the internal wave velocities as small

perturbations about a mean velocity field. We briefly explore

this alternative.

Returning to the fundamental equations (E-1), we now refor-
mulate the problem for the case of nonzero mean velocity fields.

For simplicity we exclude viscosity effects. We now let

V = V +V

where V is the perturbation about the mean V. T1he other symbols

3on pagees 225-226 remain unaltered. Equation (E-2) now reads

3V

+ (0' + P) gyo = V (E-+p2)

In the spirit of the usual perturb&tion argament we equate terms

having the same orders of magnitude. ',be momentum equation in

- +

+I



Equating linear terms In V, p, and p' in Eq. (E-42) yields

- 3V
-Z + 5[(V - VV) + V *VV] + Vp,

.+ p =0. (E-44)

' Comparing this with Eq. (E-10a), we note that Eq. (E-4-4) con-

tains two terms coupling to the mean flow. These terms will

now act as sources for linear internal waves. Next, we turn

to the continuity equation, which now becomes

a.-

(V + V) - V( - p') +5 (p + p,) = 0

SEquating terms of the first two orders of smallness gives

V * (E-145)

V Vp + V Vp' + 0 . (E-416)
- t at

If we assume stratification or the density only in the y-direc-
Stion-, these become

V- + 2: 0 (E-Z47)

- . -

* In
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Note that consistency of the perturbation procedure requires

2-_P 4 0 unless 7P = 0 (no stratification) or Vy = 0 (zero mean

flow in the vertical direction). Thus, Eq. (B-lOb) must now be

replaced by Eq. (E-!47) and Eq. (E-4I8). The Incompressibility

condition now applies to V and V separately, i.e.,

V. V 0. (E-49)

V ;-V" 0 . (E-50)

Thus, the linear equations for V in a stratified ocean are

P + Vp + P'g =- RV VV+V VV), (E-51)
-' 1 +v'+o•.o= (-• v

y By at -

V - V= 0 (E-53)

If the mean velocity V were zero, the rig'ht side of Eq. (E-51)

and Eq. (E-52) would also be zero, leading to the standard equa-

tions for linear internal waves. With V 4 0 the situation is

substantially more complicated, even though the equations are

perfectly linear. In general, these equations cannot be reduced
subtatill moe oluat eds even Vthou ainlhe equton r

i i, to a set of wave equations for Vx, Vy, V,, uainly because the

m source terms arising from the mean flow appear as coefficients

in the partial differential equation for V. Moreover, in order

to transfer energy tQ the linear field V, these coefficients

2.13



mist, depend explicitly o2i time. Only in certain special cases

(e.g., where V does not depeud on time and has only horizontal

components) does one find that V satisfies a characteristicy
equation for Internal wave eLgenmodes. In this special case

the horizontal velocities are referred to as mean shear. The

equivalent profile is then found to depend on the horizontal

components of V, thus substantially increasing the difficulty

in obtaining analytical solutions for the eigenfunctions [141],

[20]. Nevertheless, if one wishes to include source terms that

are compatible with the linearized theory, one must start with

Eqs. (E-51 - E-52). Note that the problem of solving for V is

a separate affair. The equations governing f are in general

nonlinear and might have to be solved numerically.

24
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U1. STATISTICAL DESCRIPTION OF LINEAR
INTERNAL NAVES

It is generally recognized that -the complexity of ocean

current dynamics compels a statistical description of internal

wave rhenomena. At the same time, a statistical model with a
useful predictive capability must be based on a hydrodynamic
description that holds good for a typical realization of an

internal wave stochastic process. Precisely what tradeoffs
between physical realism and mathematical simplicity are per-
missible can in the final analysis be decided only by reference
to experimental data. Since on the one hand a full nonlinear
description is far too complex, while on the other hand linear

modeling has apparently yielded some agreement with experimcntal
data [141, we shall restrict ourselves to the purely linear
case. Even in the purely linear model there are several pos-
sible levels of complexity (presumably related to the degree of
physical re-:•ism). Thus, the most complex linear model would
incorporate mean sheer and viscosity, while the simplest would
neglect both of these effects, and inclLde only the dependence

on the VFis4lA frequency profile plus some reasonable assumption
on the modal excitation coeffilcents. Here we shtall confine our-
selves only to the simplest case, and, moreover, formulate the
probler at the outset by treating the internal wave field as a

temporally stationary and spatially homogeneous stochastic proc-
-I !ess. This almost naive approach certainly =akes up in simplicity

for what it undoubtedly loses in physical realism. These postu-
lates are, of course, not without precedent. They appear to be

i i - •Implicit in past statistical treatments of ocean Internal phe-

nomena, such as, e.g., in the work of Garrett and Munk r 81.
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The essential difference between their theory and the one
presented herein is that the statistical postulates are incor-
porated Into the stochastic model ab initio, and the conse-
quences of any additional assumptions are treated within the
framework of a systematic deductive scheme. The approach
parallels closely that presented by Milder [9).

A. CORRELATBON FUNC T IONS AND SPECTRA

We shall suppose that the fluid velocity vector components
£ Vx, Vy, V. are stationary random processes with spatially homo-

- geneous second moments in the transverse (x,z) plane. We de-
fine cross-correlation functions

Rv(Py,) =<V (p'+p,y,t+T) Vp (p',yt)> , (E-5%)

where v = x,y,z r = x,y,z , and the corresponding temporal

cross-spectra by

(0p(_,YYW) = f RV1(_P,Y,T) eiWT dr . (E-55)

Substituting (E-26) in (E-54) yields

i . (9o,yT) =
yj

ff 2;( 2 eK(Pt+0) + iK'-P'-•i ~_f dK dKe-iK('O ÷: 1 o'Onm? an1*M(K,K;t,-r),

(E-56)

* [where

a•(nmK,K',t,z"),
Sfin (t+T) -inl (t+T) -i e-~ t •!

S(A-(K)e + ArK e e >

2~46t



Temporal stationarity and spatial homogeneity requires (Cf.

Appe~ndix A, Eq. (A-25)) that

(A n(K) Aý(K )> = 1 M 6 (-K-K) *n(K

<A (K) A(K')_ = 6n S(K-K') 0 (K)
n 2

__ mt 2mm = )n_
SIII

'A(K) A-(K,)> = (A•(K) A(K")> --- €.(E-56,)
n l<n M

i.e., the excitation amplitudes of the normal modes are uncor-

related for different mode indexes and different. wavenumbers.
-Tne functions n (K) and Vn(K) are spatial spectral aviplitudes.
By an argument identical to zhat employed in Appendix A for

surface waves one can show that they are both real and obey the
, point reflection symmetry in wavenumber space:

+ (K) (
n- n

We shall henceforth write 0n(K) for + (K). Employing the above

relations in (E-56) yields

1 ~~ ~ 2 e n n 3 n•lt...•

4Y2ffdEt (K) n + *,-IK) e n1  (E-57)
n

Tak~ing the Fourier transform ane~ changing to polar coordinates

I I

yie.-Lds for w>O

= 1rL.~~ j dw e M.J~W) YJ~J4. K(),)

n 0 d nnlnK
TK (-E -58)

... ,

jV



i4

Note that

d 1n (K) = VgnL W)

dK
1KK P. W)

is the group speed of the n-h mode evaluated at frequency w.

- Similarly, one finds

• i4, "',y'w, =
xx-

2ji Ii J f dwe2" -iKn(w)pcos(w-e) n2(,),cs2. ,2 n [Kn (w),w " (•"-59)

] •|I"l- dw e n n ýn EKn(0,-)w (E-59)

n 0 K n(W) vgn(w)

!gri
zz

S 2z - iK n(W)PCOS(W-e) j2ySi

f , dw e n n [Kn(w),w (E-63)
n 0 K n(w) v gn(w)

- The correlation fUnction of the distlacement ne is

R (P,y,rj 'n(rI('+Q,y~t+T) ri*(g',Y,t)>

with the corresponding cross-spectrum

ni n

n 0 ° V ,(W) y, (E-61)

B. ENERGY RELATION

IThe total kinetic eneerv-y per unit hcrizonztal surface area

is, by definition,

J [V2 (r,t)j + V2 (r,t) + V2 (r,t)] dy , (-2

-D
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where we have assumed the density p p P constant. Similarly,

the potential energy per unit horizontal surface area is

0
-W= / f N 2 (y) r. 2(r,t) dy. (E-63)

-D-

We now compute the averages (T> and (W)

2 of

i•o f =yyZ
I

I0

-D G

= f d y 10 f ro (O,y,W) + 0 (O2y~w) + 4,-z (O,y~w)] dra
2 yy z

We would like to obtain a representation of the temporal kinetic

.. -energy spectrum Fý(w) in terms of the spectral mode excitation

Sfunctions Tpn(]K,w). For this purpose we shall need certain or-
S~thogonality relations for the mode amplitudes. First, with the

Iboundary fonditions #n(0) = #n(-D) = 0, (E-27) yields a complete

orthogonal zet. We normalize the # n as follows:

-Mý Jy E~~G3 dw (E-651)

•.~ (#n''=°'#07"= • .••
Second, multiplysnc (E-27) by t m anso integratlng by parts we
futo~ ns *(,). or thsproew.hllne eti r

bonai Ins (0) , () + 0, 6(E-2 yie(ld aete
o n orm n a e2 leth a follI-D

2419
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Since Om vanishes at the indicated limits, the Preceding may be
written "

K2 4 6 (E-67)
n m n22 mnS~n

We now evaluate the integral over y in (E-64):
S0 0 0

.. , - O~y--* y f ( , y,w) dy + f O7(,y,w) dy
-D -D -D

f~~nK (w) [Kw) ],)
" [Ks(w) ( "n ,On) + () nn n "

n Vgn ) Kn(w)

Upon employing (E-67) we obtain

F, r. ETp) 0 K n(W)
2I -- 2 v CO dw 0 nEK n(W),w] E-8

2 WVgn() 0

From (E-63), the mean potential energy is
4 0

(<w> p0 f N2 (y) <n2(r,t)> dy

2 - J N 2( dy 0 ,y,w) df

dL Po f N2(y) 0111 (0, y,(w) dy
-D-C

• = dw Po N2(y)I•nn(0,y,w) dy

--

f de5 E W
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where

0
SW(W) = PO Ng (y ) 0 (0,y,w ) dy (E-69 )

-D

Upon substituting (E-61) in (E-69) and employing the adopted
* normalization (0n 0nN2 ) = 1 we obtain

S(=) - -

Ew)= ET(w)

This shows that if an ensemble of linear internal waves f£rms
a stationary and homogeneous (in the transverse plane) stochastic
process, then at a given frequency the mean kinetic and potential
energies are equal. The total energy spectrum is then

E(M) = 2E,(w) = 2E W(W)

SKn W) "02

= n dw In[Kn(w),w] (E-70)
W~g~ V )'n Fn

n gn 0

The total energy integrated over all frequencies w is:

E E 2 EJE) = dw f w)* O n n

0 0 n 0 grnw

With fln(K) =w in the nth integral, dw =vn(w) dKn

FKn() Vn[Kn(w)iw] n=nnnnw)- r n(K'w)

f Uwv f nOnv(Knw
0 0 (K) 0n 0(K )

Hence, E may also be written

EI E2Tpf K:dK fw dw *n(K (E-71)
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The quantity

e(K) 2po (E-72)

n n

is clearly the wavenumber energy spectrum.

C. INTERNAL WAVE SPECTRA UNDER MILDER'S ENERGY
-PARTITIONING HYPOTHESIS

The expressions for the velocity and displacement spectra,
Eqs. (E-58) - (E-61), depend on the eigenfunctions, the associ-

ated dispersion relations, and the spectral excitation functions
S@n(K). While the Vdisald frequency profile (and hence individ-

ual eigenfunctions) as well as the total sDectrum are (more or

less) subject to experimental verification, a direct measurement
of the relative d!st-ibution of energy in the mode wavenumber

space, governed by in (K), is much more difficult. On the

theoretical level, the physical basic underlying the form of
t n (K) must be sought in the mechanisms underlying the excitation

of internal waves. Since the excitation mechanisms are at
present not well understood, nor is it for that matter at all

ji evident that the simplified linear theory is adequate for their

description, some "bold" hypothesis is needed, the adequacy of

which could subsequently be established by correlating itsg
consequences with experiment. One such hypothesis is due to
•ilder [9], which. asserts that in the equilibrium state deep

I ocean internal wave energy is distributed among the modes in
- proportion to the square of their individual phase velocities.

For a physical rationale underlying this assumption the reader

should consult Milder's paper.

From (E-71), Milder's assumption is expressed as
2

gin (K,w) Rnn(K)l2

2K =21(K) (E-73)

n L
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where I(K) is an excitation function which, for the moment, we

my leave unspecified. - Note that I(K) may in general exhibit

directional properties in wavenujber *pace, The crucial

assumption is not the precise functional form of I(K) but ita

independence of the internal wave mode number n. One of the

consequences of this assumption is that the spatial wavenumber

spectra of energy as well as velocity components can be expressed

explicitly in terms of the Vaisala frequency profile.

We first consider the wavenumber energy spectrum, Eq. (E-72).
C Employing (E-73) one has

cK) = 2pn1(K) n(K) . (E-74)

n=l

This sum can be expressed as an integral involving the Vais~la

frequency. With the aid of identities derived in Appendix F,

viz., Eq. (F-5) and (F-7), and the ortho1genality condition

(E-65), one obtains

cc 0

p2 f(K N 2. f N(y) fDy dy ,(E-75)

n f
n=1 -D

where

coshKD - cash K(2y+D)
D. (E-76)

S~sinbKD

If the ocean is assumed infinitely deep and the bottom boundary

condition is taken as lim #n(y) - 0; y - -, then the lower

limit of integration in (E-75) may be taken as -- , and fD(y)

replaced by*

fw(y) = 1 - e2Ky (E-77)

Note that f. is not equal to lim fD as D- -, since the
limiting forms of the boundary conditions in the two cases are
different (one is a limit circle, the other a limit point con-
ditiorn) [c.f., Eqs. (F-7) and (F-8)).
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The wavenumber energy spectrum can now be written

1(K) 0
c(K) = P K J N2 (y)fD(y) dy (E-78)

-D

From (E-57), the spatial spectrum of the vertical velocity at

T 0 is

yy n(y) [*n(K) + n(-K)](K•y-- n_ n -n- "E79

n

Similarly, for the vertical displacement one obtains

in(K,y,0) - 2 (K) 14[n (K) + n (-K)] (E-80)
n n

Again employing the energy partiticning hypothesis (E-73), one

finds with the aid of (F-5)

S yI() + I(-)E-8)-• -- 2I I K2 ] fD(y) ( -1

27 21(-

This formula is quite remarkable sInce it states that the
spatial spectrum of the particle displacement is completely

independent of the Vaisdl frequency profile: the dependence of
Sn on y is governed entirely by (E-76), or, in the deep ocean

approximation, by (E-77). Moreover, the simple relationship
Sbetween the spatial spectrum S and the excitation function

I(K) provides a means for its experimental determination.

The spatial spectrum of the vertical velocity in (E-79)

Scan also be put in a form in which tbe direct dependence on

the eigenfunctions is suppressed. InserZing (E-73) in (E-79)

gives

S (K,y,o)- '- - (y). (E-)
yy 2wr K3 EI,

n1l

2514
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Again from Appendix F, Eq. (F-6), one has
!

so ta' ( K) K4 Nf(y,) g=(y".y) dy" (E-83)
S: n=1 -D

so that

Sy(K,y,o) - 1 [IMK) + I(-K)) N2 Cy") gK(y",y) dy".

D (E-84)
Thus, the spatial spectrum of the vertical velocity is

proportional to an integral involving the V~is&iT frequency.

Similar expressions can be obtained for the two horizontal

velocity components. It is also interesting to observe that
the ratio of the (spatial) vertical velezity spectrum to the
spatial spectrum of the displaeement is independent of the

excitation function, viz.,

0
2K3 J N 2 (y.) g 2 (y.,y) dyn

S y(K,y,o) -D-)
-.- - (E-85)

S ,1 (K, y ,o) fD(y)

S J which ratio is readily computed for a particular Vaisil5
frequency profile.

The suppression of the explicit dependence of the spatial
spectra on the eigenfunctions and dispersion relations is a
direct consecuence of the assumption that the relative energy
distribution among modes is In proportion to the squares of

their phase velocities, but is completely Independent of the
nature of the excitation funct~ion I(K). Or. the other hand, the
temporal cross-spectra, Eqs. (E-70), and (E-58) - (E-60), do
rot attain a similar simplification but instead depend expli-

m l jl citly on the eigenfunctions and the associated dispersion
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relations. Employing (E-73) one finds the following relations

for the temporal spectra of ener-gy, displacement, and velocity:

E(c) W2) dI[Kw• ),w] (E-,8-

02(y) 
2w

. c(Oy.w) = 2  . - f I[Kn(),wj d (E-87)
n n gn 0

02(y) 2-
",XOyY c)= I K2G (;d% f dn

n nK ,grw 0

-- (Oy,2) , (E-88)
OIT

Ox (O'y'W) -WW n I((y 2ww dw
4 XX ~(co) CO f nf~o)w

n E -Knw gn 0'

- ~(O'Y'c) -(E-89)

It has been suggested that equilibrium ocean internal wave

* •spectra are isotropic in wave number space [8)[9]. A. iso-

- tropic excitation function for which there aopears some experi-

mental justification is of the form

II(K) =CK (:E--90)

where I & D L 2, and C a constant. Consider first the rather
"artificial case of a constant VTisall frequency profile. Then,

K (W-) ( n_ , , (E-91)
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Kn'Vgn = N(N - ) (E-92)

[- The temporal frequency energy spectrum becomes
K l (1_2 1 (p+l (E-92)

E()= zoC jz 2-.
PuP

•The constant C can be determined from the normalization con-
Sstrainz on the total energy:

S' ~ N2

E = 2 f EWu dw (, AE-95)

where w, is t~he low frequency cutoff (e-g., t~he inertial

frequency). .(The factor of 2 entr-ers because fE-g9-) gives only
the positive frequency part of the doub,_-sided spectrum.) The

constant C is then

stwhraie o h oa nry
CN

c&i

0. 
D

frequenc) (Th eatro nesbcas E9) vsol

(P '
cntn Cos i

F ta Od (E-98)
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With these normalization factors, the temporal frequency energy
spectrum becomes

E(w)E [N2 - ] 2  (E-99)
2 F I j

The temporal spectra for vertical velocity, horizontal velocities,
and vertical displacement are obtained from (E-8?) - (E-69).

Thus, for the displacement, one obtains

~~~O poy DNPFPj(+1)) E- n=2i 1 in~

which has the same form as the eerz-gy spectrum. The vertical
velocity spectrum differs from {E-10O) by the factor w2:

S4yy(O,y,w) = 4) %,(O,y ,•) . (E-101)l
(b yy (,,) W TI YW

Also,

I O1y,w)=)(y,)=______["- 2 TL (E-3.02)
ati '(p-l) fP .

A These equations are based on the rather artificial model
of a constant Brunt-V-isili frequency. -7-here are no caustics

(tut-ning points) and all modes frc.! the lowest to the highest

are affected by the boundary condition on the ocean bottom.

It is perhaps worth comparing the preceding results with

*1 those of Gerrett and Munk [8]. In arriving at their formu-
lation they do not employ oir assumptica on excitation, viz.,

Eq. (E-71). Also, they do not use a constant profile but rather
one which is exponentially decreLsing. They consider only
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higher order modes with caustic boundaries (i.e., the ocean Is

assumed so deep that only the few lowest order modes, which
they neglect, are affected by the ocean bottom). Although such

features have no exact counterparts in a constant N-profile,

in the frequency range w«<N we would axpect some agreement with

the Garrett and Punk spectrum. Indeed, the Garrett and Munk

analyzis does not apply to frequencies close to the local N(y)

(i.e., one must have w<<NHy) for all y). If one sets wi to

zero in the Garrett- and Munk formula for E(W), the energy

spectrum behaves as l/W 2. This agrees with the functional form

obtained in (E-99) for w<<N and p = 2.

- •This behavior of energy with frequeney in fact follows

Sf.rom the general formula (E-86) subject to (E-90) and p = 2
proviL2ded ice e-mploy the WKB approximnation for a-13% mo.des. The
wave-number frequency relations under the 'WKB approximation are

K n M)- 0 (E--133a)

f - dy
-D

and r0 2

[N2 _• -2" d y

-D

vn ('J) =ý 0 I (E-lO3b)

Consequently,

0
2J [~ 2

]2 dy

SKnvgn 0 M-!03

.. J 2 -- 2]2 dy

whi.ch is indep-endent of n- if we substitute these expressions in

•i 2• 59
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(E-86) with I(K) = CK-p, the energy spectrum assumes the form

C 0 01
SEuo (,'1_2)' dy f N2 (N 2-w') 2 dy (E-10k)

lip WP(12 n j
-D -D n

Under the assumption that w<<N(y), this reduces to

"nE() - [ d 1"1 (E-105)
EDIin

and with P = 2 one again recovers the functional form of the
Garrett and M"unk energy spectrum. This compatibility with the
Garrett and M.•unk spectrum applies to E(w), but not necessarily
to the temporal spectra of the velocities and displacement, viz.,
Eqs. (87) - (89), since these spectra contain an explicit
dependence on y through the eigenfunctions. Garrett and Munk,
on the other hand, integrate over the height coordinate to
eliminate what they term "fine structure fluc~tuat-ionsn. i.e.,
the explicit dependence on y. From the starrnpoint of a statis-
tical description based on the theory of spatially homogeaieous
and stationary processes, there appears to b'e no basis for vuch
an "averaging" operation.

D. INTERNAL WAVE SPECTRA FOR AN EXPONENTIAL VAISALA
FREQL0ENCY PROFILE

We now consider the exponential N(y) Proftie employed b?
Garretc and Munk in constructing their energy spectra. Istead
of initially assuming a finitely deep oc-ean and then going over
to the deep ocean in the limit, we shall assume an infinitely
deep ocean at the outset. Thus, for

W iy) =N(0) ex-D (yV/b); -=<yv<O (E-106)

'the eigervalue problem can be solved exactly since the equation
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can be transformed into the Bessel equation. When normalized

in accordance with (E-65) the eigenfunctions assume the form

S(y) ) 1 2 J(Xn;Kb eY/b) (E-107)
"n N() Kb (X n;Kb)

where

JKb(X-n;.Kb) = (E-108)

The n (y) satisfy the standard rigid lid boundary condition at

y y = 0, i.e., #n (o) = 0; the second boundary condition is

rn # n (y) - o as y ÷ - •. It should be apparent that these

eigenfunctions cannot approach those for a constant N profile,
i.e., b - -, since the lower boundary of all modes comprises

caustic surfaces.

The dispersion relation is given by

n KbIT Xn;Kb(-19

With the aid of the differentiation formula for Bessel function

with respect t3 order* one find: for the group speed

xXn;Kb dt

Ky ~ ~ ~ ~ ~ ~ j (t) = \ ________IC-

Kv 11-2 k;7)1 10

M- (W + n;Kb-

*The formula in cuestion is

iiUt , nwith J (0) 0

dv V+01
(G.N. Watson, "nheory of Bessel Functions", Cambridge 1958,
p. 508-)
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We now consider some limiting forms. First assume that

Kb,>1. A typical value for b is 1300 meters. If the longest

wavelength of interest is about 200 meters, then Kb -~ 40 which

Is compatible with gb>>l for all shorter wavelengths. The

zeroes of the Bessel function in (D-108) lie in the range

Xn;Kb>Kb" For large Kb and

y/b 3

e Xn;K - Kb ,5(b (E-111)

the Bessel function may be approximated by the Airy function Ai,

viz.,

JKo(e Xn;Kb) 2~ Ai[2 3 Tn(y) (E-112)

2(_Kb) 3

where

e Xn;Kb = Kb + (Kb)T n(y) - (•-i13)

2If we denote by a nthe nth zero of Ai(-a), then a~ n T r-(0)iy

and 1

n;Kb Kb+X Kb + I n; n = 1,2, (E-II4)

"The dispersion relation (E-i09) may ncw be written

SKb ____ (E-115)
*N(0) b1 (2

Kb+~ a l+:-L .

AFor higher order modes, i-e.,

X e KKb+ en Y0(Kb)SXn,,Kb
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Eq. (E-115) no longer applies and one must employ the Debje

formulae (WKB approximation). In that case the dispersion
•-- relationship is given implicitly by

Kn (W) = 0 (E-116)

f VN2(y)-w2 dy
S~Yl

with the turning point yl defined by

w = H(O) exp (ylI/b)

If we restrict ourselves to the range of Kb encompassed by

(E-ll1), then (E-115) yields*

3 3

n~) F (O
2 -b1 (E-117)

Note that for large Kb and moderate oan w must be close to N(0)

since by the assumption in (E-11) an = 0(1). To this extent

the situation is no different than in the former case of a con-
stan prfil, E. (-91). By differentiating (E-117) wth re-

spect to K, one finds _3

'v n w ( )-l -0o)

*More generally for large Kb,

t -- 3

Kb ~2 T
3 TI-Tcos-i1 n

For n<<Il, a>>!, 2n 2 (n - v the result reduces to WKB
n ~ n2  Tj

approximation for the exponential profile; for -n 1 , one
obtains (E-lI7).
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Note that the product of K and mode group speed is independent
of n, as was also the case under the WKB approximation. For the
energy frequency spectrum one obtains the fcllowing azymptotic
result:

EWca - C-P [O J 1 - w 2(E-118)\2 N(O) [ N(O)

Tn this case E(w) - 0 as w-.N(O) for all p > 1. This shows that
under the assumption that the mode excitation obeys Milder's
energy partitioning hypothesis, the energy-spectrum vanishes
at the maximum Vaisali frequency even if the lower boundary
is formed entirely of caustics.

Garrett and Munk employ the asymptotic forms of the Bessel
functions for large arguments and thus consider the range of
high mode numbers only. This corresponds to the other extreme
of the frequency scale, viz.,w<<N(O), within which (E-1ll) does
not hold. For large arguments

J~ (Xn -2 cos(Xn;Kb -r/4 - Kb r/2)

n; Kb

and

XnK - w/4 - Kb -: 1 (2n-1) w/2,

or

Sn;Kb n- 1] w+ Kb w/2

Since the preceding asymptotic form holds only if Xn;»Kb>

X 1

where n is large. Hence,

41
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Kb N(O) Ky (W) W (E-119)SK1 gn

(n-l) 1)

SThe temporal frequency energy spectrum now becomes

SpD+l

E(a) - 2co (.p 0 (N1 (E-120)
0\) n [n-JD+l

The sum in (E-120) is to be extended only over large n. Equiva-

lently (E-120) is an approximate representation for 6 well below

N (0). For p = 2 one again obtains the functional dependence

on w deduced by Garrett and Munk.

We now examine the energy density spectrum in wave number

space, which is given by Eq. (E-78). When specialized to any

deep ocean profile (i.e., lower boundary condition lim n 0,

y - =) in conjunction with Ea. (E-90), the energy density as-

sumes the form

--- 2f e2Yy y)

2.C K(LI-i Po N2 (y) dy K (E-121)

Formally. 0 < K < For 1 < p < 2 ,K(K) is not

integrlable over the full range of wave numbers. This can be

remedied by either assuming a different functional dependence

- t of I(K) on K near K = 0, or alternatively, oy truncating e(K)

below some lower wave number K = K We choose the second al-
P ternative, as do Garrett and Munk in their paper. If we now

specialize Ea. (E-121) to :he exponential profile we obtain
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-p-i

Irp Cp N2(O)b K ;Kc < K <
i+ Kb

(CK)=

0; 0<K<K Kc (E-122)

where we have employed the notation C for C, to indicate itsD
dependence on p. With E the total energy per unit horizontal

surface area,

E = IPob 2 C9 V2(0) j K , (E-!23)
!+ Kb

Kc

one finds

C = E , (E-124)

T P N2 (0) b 2 In c
V

C2 = r !+ (E-125)
-"Po N7(0) b3 1 Kb n cj

where

c = K cb " (E-126)

We shall determine the constants C! and C from the theory
and oceanographic data presented by Garrett and Munk. Since
their theoretical model is fundamentally different from the one
employed herein, only a nartial correspondence with their theory

can be established.

From Garrett and Munk, P. 252, following their Eq. (6.23) we
find ,= .04 cpkm. This is the wave number below which the
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0,7

Garrett and Munk energy wave rramber spectrum.-is truncated. Trans-

lat.ed to our notation* K /21r = .04 km-1. Again from Garrettc
and Munk, Fig. 1, p. 228, b = 1.3 km which equals b in our nota-

tion. Hence, v K c b = .3267. The (integrated) energy per unitC
area, p E, equals .382 x 104 joule (Garrett and IMunk, p. 252).

We have denoted this quantity by E. Finally from Garrett and

Munk, the maximum V&isald frequency N 3 cph - 8.333 x 10-4 cDs.

In our notation this yields N(O) = 27rN = 5.236 x 10-3 rad/sec.

a! 103 kg/M2):We then find from Eqs. (E-123) and (EE-124)(note p 0

1.2166 x 1G (E-127a)2

C 1.8727 x 10-2 m (E-127b)

where C is dimensionless. As a check on these two numbers, let
2

us determine C and C by comparing the temporal frequency energy1 2
spectrum, Eq. (E-94), with the correSDonding expression of Garrett

an-4 Munk. From (E-96) one finds

D+l 2-p
C a: 5.33 x 10-7 b (E-1281)

p

We have ý13) 1.20205, C(2) 1.6449. Consequently,

C 2 a!1.3757 x 10-5

C 1 a! 4.16 x 10-3 M

In vies of the crudeness of the approximation, Eq. (E-94)(wi4ich

holds for a constant N profile), the agreement between the values

in C 2 obtained by these two alternative procedures is rather

remarkable. The discrepancy between the two values of C 1 is

attributable to the fact that the total energy in the wave

number domain is not conserved in the Garrett and Munk formula

We avoid the DODUlar but meaningless "unit" epkm (cycles per
kilometer') since a "cycle" is dimensionless.
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for E(w) when p is changed from 2 to 1. in all our numerical

calculations we shall employ Eq. -E-127). With these constants,

together with b = 1300 meters, Vo = .327, N(O) = 5.236 x 1O_3

rad/sec and 1o= kg/rn substituted in Eq. (E-122), we obtain

Vi
1.77 (I + ) • joules/m ; p = 2

(I+

Ke (K) =

1
2.097 + ) joules/m p = 1

(E-!28)

where v is the dimensionless 'uantity

v= Kb (E-129')

and KE:(K) is identically zero for v < .327-. Thus for v >>
the dominant effect of a higher value of D is a more rapid decay

A of energy content with increasing wave numbers, as one would ex-
pect. The functional forms of the energy spectra are, of course,

not independent of the Vdis:-ld frequency profile. For example,
consider a profile with a mixed layer rear the ocean surface:

0 ; -y < y <0 ,

N(y) =

(Y+Ym)/b
e< y -y (E-129;

One then finds from Eq. (E-121) with b = 2

- 2v Ym/b
KE(K) p Cb'N 2  i+v-e (E-!30)

-,0 M v 3 (l+ V)(E10
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Com-oari,!g this with the first equation in Eq. (E-128) we observe
that although the functional behavior for small and intermediate
"v differs, the decay law for :arge v is the same in toth cases,
viz., V -3

The exact form of the temporal frequency energy spectrum
is more comlDicated. -Employing (E-86) together with !(K) = CK-p
and the relations for the exoonential Drefile in (E-109) and
(E-l!O), one obtains the fo!!owi--g:

1

V -3

M ,x n Jcules/m- e ?,

2
12 !- 2n

• c(E--_31)
for p = 2, and

xV• --2

%"E(c,) = O.f! x iO Joubes/m2 l.z,

• for r = 1, where

Li

_•':.•and vn = vn(n) is the solution of ni - (r ) for -.. The .ohys-

-•- An; ",

•,• !ca! eonsta~nts empboyed in (E-!3i) and (E-132) are the same as

-- •'----Tf•.given in the oreceding. discussion. .Tne results of a- numerical-

[• evaluation of EG~i) are plotted in ?ig. E-.. The series were

e found to converge quite rapidl~y, so that over most of the range
o:.1ny a f modes were re2uired.
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SFIGURE g-.Integrated average energy density ofCinternal waves in an exponentially

•,• stratified ocean.
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- - E. TOWED SVECTRA

The temporal spectra of disp!l.c•ment and Internal wave

velocities discussed in (a) presuppose that the observa-tion plat-

form 's perfectly stationary with respect to earth-fixed

Scoordinates. Actual internal wave ieasurements almost in-

variahCy i:nvolve moving tor towed) sensors. We, therefore,

..... like to formulate exir-esslorns for temporal spectra that

wcould be observed from a moving measure!--ent platform. We

suP.Dose t-hat the sensor is mov•ng at a uniform velocity

V at depth y- Let the orien"tation of V with rsDect to x-axis

§ i be a, as sho-wn in Fig. E-2.

.ziider's mode partitioning hypothesis as given by .E. (E-73)will.• she~ leave t-
w•: Dbe emp-loed throughout. However, initially, we shall leave

Sthe fncti onal form of the excitation function I(K) unspecified.
-e auto-correlation function of the vertical fluid velocity as

would be observed on the platform moving with a velocity V is

zX

*. I j
I

i
Jr

-. - I
I

* -

..- iFIGURE E-2.

-- 2

S271

;zI

i -I i•-•i'l,'l • ii i ~i" I !! ! ! i I " ,, . ,, . .. . .



given by Eq. (E-57) with p replaced by V T:

'.4 --- . . •,•
• ,a) - !(._ e+-(':_)•.-3 ,

2-. ffK In L

Th e correlation function of the vertical Darticle displacement

is obtained from the prece ding expression by dividir- each term

in the series bv Ql2

-i inA

The sup-rscrip; V is emmpicyed to distinguish the:t cor-relation
functions from those in a stationary refeence fra-e " The ter&-

pora! spectr..e are defined as Fourier trans'forms of these cor-

relation -.unctions. Thus. upon changing to polar coordinates,

the snectrum of the -ertical fluid velocity is

•0 ~00

"V K - ( - 1a) (E-136)

-• • MZ r0 ver'.icai doispiacem_-nt 4>(VA (yi is given
bv •]the same expression, p-ovided only tha. is replaceda:

n. n- in-egati on (either over K or w) can be carried out

si-ply e',aIuatInr the inegrand at the points for which th.e
* a-im-nts oft.-e delta functions vanish..
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-?orrmally, the orocedurre -s ~'74 7ial. -iv~~~ are

r~ist e eercised so that al! contri bu t.ions are co~rect-, Re

cone for.. Thi "booJ1J1.-.3-i..n.5- is Zfc i _2 It ;..~.q... tea I fre rewries

~c E-3)in a sliightly diffferent frm Par this puxr!oý±t we

fir-st change the variable of'I int egra ti0 fr: 0 -zi w t i

Tmhe zeom.-tr.~cal 1-airsi ~'ig the three.- - aires :S pct-

-~ in Fi-E21 ze mhai_ als-' at -t'e -- ~e ha o

_(K) > KS_ r!r e integrand i-n 'E:C - a!-

~-av r-e~enas peffodiv in w ~ithi ;.Žricd 2=2weca

i 1 ;zmt-s of,:rU~ n t i-' t~ t'! -. 1 p; !-)'in-

of th(f- t~ai-e ~ o~~ tr.<fee ono oe

f:-o~i tL~, c ~ I P- (-2:z becozes

;7 7Y K

-We wi:uj rirst Jin+te',3a!-_ -v--- K. Con-s-der -fi s of the two

T*~r -bý? 
e tr I

f: ~ c~- -~ I 3 ELk

mrM-C =-



V~~~ Co 2 ;-

Z he L-r4,neiD&1 intcrva.L In 6 is -~< cos e < CO( <8

ziet;teS:IlutiLons : oEar - E--r40Ž for K :Is a flUn~ction ct P w
- ~ and V cos 8,which we denc-te by Kn;ta. VCos z). n alternative

fcrm of 'EQ. !E-)3 0) 'S ther=fore

1'701 any f"A= e , the passibl-- scluitIsn -af Eqo. kz-1vi0 -0or

a as a function, cz4 3 -a '&-b* exhilA-:ted ý_itn -;v. a of a gah

-ical. cc strac~ion by pc.-ting !C (K) K' %. co 8 sa oi

:" wih as n ara=-tler. Tzhe root's cf Eq. (-~)aete

detem-aneld from --he Irlt-ee tins Lfteeor~-ti u~e

with a 111ne a~ = ciinstant& draun para--iri zo the -M"! zc i5sa. A

ty;ýtcal disterstarn ýnur (K) 4s a zn-no-onl-caly 1- rezasing

furnctilor. 1-ouflded frnom abtove by 'the N_'~t~. madlmxIum

+~ .o~ t gI.I as o przre zer n a mi r t D c all I icreasi ng

::c~on.(~'~ ohe~-~ ., ~n '2 < 2 < ~ t~he curv:!z wtfl

vavtea peak, -respond f to a Falue of K V1en -yth-~~~tc

cm E- !2

L-e. ar P ,IuofKSuch t,%at t"he 'S-z- nf the --ave

ecas;-2eof the-'- . *tz:*

agar-on td-Iect~cr. of Ithe 1.nsernal wa-v=. -

- f I '
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then by virtue of the monotonic it.y of fi (K), Ea. (E-1142) has
n

always a solut-ion* for r.Thi~s means that there is a wave

number K such that the corresponding wave grOUp speed equals the

olatform velocity. Since typically internal %fave group speeds

are on the order of a fract ion of a ;netter/sec._ this condition

ecLn be satisfied only for ver-' sm-all ,!~at'OrIL velocities. For

faster _latfozr- velocities, viz., 1.f

Eq. C3-7.142) ca~n have a solution± only for 8 striccly less than v.

Ttiplsal p-ots of R G,1 (8 + KV cos 3 are Shown~ -in Pig. E-3 for

the casa of ZloX Dlatform. Speeds, VIZ., Whten Eq. (E-14I3) holds..

a I1

Q ()

- -7-

ej.

aI a

i--I-------,A-M-----------------------
I P.3();fi~T(MaeG

*0 _
N&~

FIGURF E-3.

The fi,j~r are G~~ri n~y if thea lner-tial' 1 fecuenc ef-
'feets Bre regl-rct~e. These would idfv 4the behavcro

f ý!at Si nc. r. we neglect i.aert-ja3 efzee-s a state-
-- n -:ý* as- 147 Is to be taken _,nly as a geo-

* ms~:teal or-y of 4Q..e assumed £u~in1fomn. of PI, 011.
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Consider first the casw w < N where w corresponds to

tne •mx-mua ordinate of -

(:3 = 0 C(K)- V , (K-1-!5)

-CC

with K_ determined frc.- a.. (E-1_42 with 8 = s. From Fig. E-3 we

obseri.-, that for 0 < S < v/2 there is only one root, which we

denote by Kn(w,S). In the figare its tyDical location is re-
presented b" an open ire whi!c the two extreme positions

(correspondr• ; to S = 0 and S = a/2) .re represented by filled

circles. Thus, Kn ~ _nn <-- •n -- n,max< XnKm0n satIsfyLing

n n, ' nn

representz the range of spatial wave rnumbers contributing at

this frequency.

(1) .(2)zo:- / > I/ tnere are tu roots: 3c ana (• correspond-n n
in. 'o two possible intersections of the line L3 = constant with

8(n)
-' 1the curve , P(K) + _K cos 8, V/2 < 8 < ma; No Yeal solutions

are obtained for 5 - 8'__R (see Fig. E-3). For E < w < N ,
(n) 0p -iktw

i •x is always less than z. As 8 approaches S=, the two

roots degenerate into a single root. -he range of wave nurbers

-C contributed by K(n is cp rised within L.he finite segnent• ~n

n,.ý-x- n - n V- l 7)

On. thel other hand, the range of contributing wave Pu.bers as- -

sociated with K()s infinite, vLz-,

-- '. < .•.(2) < •

n - n
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77 - 7. -7!7 7l ,i7, 77j k!'! !

Thus, with B %/2, K(1) a while is at Infinity.
n n, n

As S is increased, the first root increases, while the second

root decreases from its initial- position at infinity, both roots

reaching their final com-on value Kmax t B = B (n)
max.

Suppose we now consider the frequency range 0 < u <

For 0 B • "-/2, the situation is t+e same as before, i.e., we
"!h.ve the single root K Whe-en 8 >- 2, we again obtain tworoots= 41}e~ K 2 ) n
roots: 1 and K'. Now, however, the maximmum value of B isnn (1) (2)Secual to 7, so that r ra as x increaaezS-nensrain " "
from 1/2 toward it- maximum value of i, the two roots remain

distinct. If the platform velczity is reduced to zero. then

(2) • while K~ nl w"hh then is determined by the simplennSdisoer-ion relation flS(1n) =

In the frequency range w > Nmax the situation is substan-
t-'a-!ly simpler. Since the maxybmam of f(K) + Kcos5 fcr -/2 < B < "

-•. never exceeds Nm X, there are no roots for S ) w/2, and only the

sinzle root r in the range 0 < B < -,/2.

The curves ln Fig. E-3 have been drawn for the case of low
olatform velocities•, i.e., in the sense of Eq. E-_U3). Clearly,
for fast plat-orm veloc.tiee, i.e., when (E-144) holds, the preced-

-nz discussion for Q < w < N armlies without modification,
excert that •c = 0. since now the curve 9 (K) - KV in Fig. E-3

lies outside the r ange of positive ordinates. Consequently, the
-ange of S is in all cases < < <. For >max < .4a -ir. only one root is obtained, v~ z., K for 0 < B < w12.g -ne vi." n for -- <72

% e must still consider the roots of the argument of the
secor.nd delta function in (E-138), i.e. .

W= Kcosk - n (K) (E-!g9)

Since w > 0, *nly tne range 0 < B < 7/2 is of interest. For any

positive monotenically increasing function 2 (K) such as in Fig.

SE- (-, can have only one root, which we denote by x)In

2 .

S= II i L iI- fI ' ~ 'l..
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The range of wave numbers encompassed by this root is infinite,

r3) (3)(WS) < (E-150)
*n n

where the infinite endpoint corresponds to 1/2. We also
note tLat

(3)
:1~~ fl, K f

V0n ,rin •

so that this root, just like 1(n2) arising from the first deltanr n
function, describes a purely motion induced effect.

By way of summary we list in detail the various parameter

ranges in the "aug•-arted" disDersion relationships (E-140) and

; (E-!h9):

! •: o > max

i}" •n=; (I) (K) + •.cosB - c =

has one solution K= (n(,0): " < < < -<8<z/2.
n n,min

(K)) n -) KVcosS + c= 0

(3) (3)has one solution K=ic.. (WS); nm < nI < "; 0< _<_/21
n -n,min nE11

S~(E-!5i)
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LS < t' < Ala

(1) qi (K) + Kvcosa - = 0

has thr-ee solutions, 1) K< O< <n2<n<n
"n n,min n n,"'ax - -

2) K=c,)G,0) .(i) / -max)< , p <S<Cn)
n nTax n n- max"

-~(2) 'r' %=-a) 2)(n

<K <=, -- mx

2 (ii) Zn(K) - KVcos, + w = 0

(3) :(3) <,(3)< 0<</

has one solhtinn "=c3) (,O),< < 0 <</2." i n~rsin n

(E-152)

S0 < .< W c

%The same as in the preceding case, except that (n) = and

< K < , ,(i) ,, (2) < X ) < where max
.n,max nn,mn n

IC (- I(2) (E-153)
n ,max n,min"

With the aid of these results we can now integrate %'-!38) with

r-eszect t.o K. For the case ,c > !: we obtain

2 41I 2 (3 ) 02 .' (3) ,
______,_ _.•_(3 3ni .,(3).2 ,(E-154l)

-p--[ +((.. (•(3•)]•

n VIfP-l i-es n g

where "we h-aie used the notation 0 nv,<n) to bring attention to

n nthe fact that the eigenfunctions generally depend on K which,

in this evaluation, must be replaced, by in or i(3) For the

Z79



casew < < N we have-! cae wcmax

T/2 2 4 (3) 2 (3) 4(3),

-D(") n n nn

(n)
S2 •max J tn "nY )Cn"(k)CL+7 s'2" •(Y' W "n (K ) n

~-fdo ')Vo0 (21) 2 *(E-155)

E£=l n ir/2 gi n n

SThe expression valid within the frequency range 0 < w < w,
can be obtained from (E-155) by replacing 8n y ,t. The range of

integration is then the same for all modes, so that the integral

can be brought outside the summation signs. An exact evaluation

of these expressions would be a formidable numerical task.

primarily because of the explicit dependence on the "augmented"

dispersion relations.

We now consider the special case of fast "tow speeds" V

and frequencies greater than the maximum Vgisla! frequency.
Clearly for -uir/2 and V sufficiently large, both of the "aug-

mented" dispersion relations, viz., (E-140) and (E-140) have iden-

*. tical asymptotic solutions fcr K, viz.,

K -cs (E-156)

If the excitation function j appearing in the numerator of

(E-154) decays sufficiently rapidly in K space, then the net

contribution from the neighborhood of • w/2' 4s small
(recall that both K and K (3) as -, ./2). Under these

.•n n
conditions we can set
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S,:(3).K K2 C (E-157)

osB n VcosB s"

11, and thus obtain an asymptotic approximation to (E-154) for large
4 V. Since to the same order of approximation,

v (IC < ) Veoss
g n n

(K << Vcos8gn n

S'4the asymptotic approximation to Eq. (E-154) becomes

(V)' 2 4,
D Yy W jd0!iji(Ka+ir~i3) + J(!:,cL,3)3 ZYa (K ,(E-158)"0 f

where K is given by (E-156). Eq. (E-158) holds for tow speeds
whi.-h are much larger than the wave group velocities and for

W > Nmax. Unfortunately, a sImilar asymptotic development does

enot hold for e < Nmax, -. e , in (E-155). This is clear from the

dispersion curves in Fig. E-3, which show that 8 = n/2 need not

correspond to ._ large wave number.

Ji The Aosed form of the last sum we have already employed in
the representation of the spatial spectrum. Thus, with a refer-
ence to (E-83-, the pD'eceding reads

"•!2 /2
" " If IdB-•[J(K'Lj ,a+-v B) + J(K,a, 0) Ifj!2N "g2 -5)YY d -- ,f (y-)g2(y-,y)dy".(E-59

V 0 -D

The asymptotic expression for the spectrum of the displacement
Is obtained from (E-!58) by reDlazing f9 with i1-. The sum is

n nthen carried out with the aid of (F-5), with the result

_2q1



ir/2

M(yW) - 2• d [(jC(K,8+IB) + j4 IK,o,B)] fD(K,y). (E-160)

-V - O 0

Just like the corresponding spatial spectra, (E-81) and (E-84),

E-q•. (E-160) and (.-159) involve at most a dependence on the

Vaisala profile, i.e., they do not depend explicitly on the

details of the dispersion relations.

Suppose we assume that the excitation function I(K) is iso-

tropic in wave number space and of the form (E-90). If we also

use the deep ocean approximation for fD(K,y), Eq. (E-77), then
the asymptotic form of the (temporal) displacement spectrum in

-I

(E-160) becomes

wr/2. -6

M !I-'~ (l-eY(E1)

0

With the aid of the transformation t = secO this integral can be

put into the following form:

cv' wT""J f (T "L62)

On the other hand, from (E-81) the spatial wve number

spectrum of particle displacement for the same excitation func-

tion under the deep ocean assumption is

KS (K) = 1 C-2Ky; (E-163)

Comparing this with (E-162), we observe that the towed teM-

poral spectrum contains as a factor the same characteristic de-

- .cay law in frequency. This decay law is, however, modified by
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I

the integral. Had we assumed a unidirectional wave number spec-
-. r0trum, then the dependence of c) on frequency would have matched
exactly the functional dependence of the spatial spectfum on

wave number. The discrepancy between the two functional
forms is a measuire of the effects of wave number isotropy.
Such effects are weak only at high frequencies and large
KIyI. Thus, since the frequency dependent part of the integral

contains w only in the argument of a decaying exponential :re-

call that y < 0, while C > 1), we have for I >I >l,in1
Sn (y,) W(V (E-164)

On the other hand, for KlyI >> 1, (E-163) gives

KS C K-- 1  (E-165)

Of course, the form of (E-162) is sufficiently simple so that
it can be evaluated for various combinations of tow speed and

"I V decay constant p. Since the towed spectrum is a measurable
quant ty, calculations based on (E-162) are subject to direct
experim-ental verification. it is imuortant to note that (E-162)

holds for any VTisdla frequency profile in a sufficiently deep
Socean (e.g., greater than 3000 m). The a~ssiptions underlying

(E-162) are: (1) Milder's energy partitioning hypothesis, (2)
the functional dependence of the excitation function on wave
number in the form CK-, (3) isotropy of the wave number

spectrum, (4) fast tow speeds and w > Nmý,x, and ;inally (5) the
validity of the linearized theory together with stoch:astic
stationarity in time and space. Of these assumptions, (2) and

(3) are readily altered. Thus, expressions similar to ('E-162)
" can be obtained for other than-the power law functional dependence

of the excitation function.

"2-83
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While the displacement spectrum is independent of the

V-•isalg frequency profile, the spectrum of the vertical velocity

in (E-159) is profile dependent. For any specific

profile (E-159) can be readily evaluated, again affording

theoretical results that can be compared with experimental data.

I
I

Fj
4

-- ,
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APPENDIX F J

TWO IDENTITIES INVOLVING SUMS OF WEIGHTED EIGENFUNCTION PRODUCTS

!We suppose that n(y) is a complete (discrete) set of. eigen-

functions to the eigenvalue problem

d? K2 .32(Y)rd2 ( 1A (K) - n )= c. (F-l)

with the boundary conditions

On (0))

(--2

SC(-D) =0 -1D <_ < 0

or

n(0) =0

Y n-
Li (F-3)

lira 0n (Y) 0 ;- <y< 0

-4

The eigenI•unctions are normalized in accordance with

0

* J N2 (y) 021(y) dy =1(F-4i)

-- D

where D - • for the boundary conditions (F-3). Then the following

2 identities hold:
287
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112(K) (Y 0 y' - Kgyy) (F-5)n=

04) Ony 0 ny t  
=Y'JNY") g(y"Sy') g(y,y"l) dyl

Sn~=l -D

(F-6)

where

Ps ~.h Ky<+) snh~> ,for B-C (F-2) (F-7)

K sinhKD

g(Y.yI)

KI

These identities can be inferred from a more general result

given in Ref". [21]. H~ere we Present a direct Proof of these

if inno-rt ant relations.

A Procf:

By viLrtue of the nomrmali-sation (?',tbhe "co1rD1etenessr'

relation for the eigersfunctions ma~r be writL-ten in the follow-

ing form

Let and

F ~~~h 02 ?~~y nC t  hen upon taking account of(-)
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one has

* I 
h !Qx 0 (y, ~(y) 11 2 f2(yt) l.L j 12 (y)nnn n :n n2a ] n(2

n=l :=i n

In view of (F-9) this may be rewritten as follows:

d 2 h _ K2 h = - K2 6(y-y')

dy 
2

With h K2g g is the solution of

(Th-d Kg , 2 

(F-10)

SEvidently h and g must satisfy the same boundary conditions as

n n(y)- Consequently, the Green's function proble•m in (F-l0) must

be solved subject to (F-2) or (F-3). One then finds that g is

given by (I-7) and ýv-8), respectively. This establishes (F-5).

To prove (R-6) we repeat the sane procedure for the func-

tion

:1 fTu y') = • 'n ¢?n(Y) n(=)

Sn 
nn 

n

which is ecuivalent to

d2f ,Kr N2 (y) K2 • .0(y) n(Y,)

d 2 
nn1
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--N(y)Kh N2(y) K"1 g(y~yt )

Thus, f(y,y') is the solution of

AL ;2 f(yy,y) =K4N
2(_) g(y,yt) (-i

dy

Again, fl'y,y') must satisfy the same boundary conditions as * (y).
I Conseouently, (F-!!) is solved by the Green's function in (F-10).

vi.Z.,

0

4. - ~f(y,Y')= l dy" 112(y"~) g(yn,yt) g(y,yt') ,(F-12)

-~ -D

which Llroves (F-E-)

Q..D
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